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Abstract—Passive acoustic monitoring is emerging as a promis-
ing solution to the urgent, global need for new biodiversity
assessment methods. The ecological relevance of the soundscape is
increasingly recognised, and the affordability of robust hardware
for remote audio recording is stimulating international interest
in the potential for acoustic methods for biodiversity monitoring.
The scale of the data involved requires automated methods,
however, the development of acoustic sensor networks capable of
sampling the soundscape across time and space and relaying the
data to an accessible storage location remains a significant tech-
nical challenge, with power management at its core. Recording
and transmitting large quantities of audio data is power intensive,
hampering long-term deployment in remote, off-grid locations of
key ecological interest. Rather than transmitting heavy audio
data, in this paper, we propose a low-cost and energy efficient
wireless acoustic sensor network integrated with edge computing
structure for remote acoustic monitoring and in situ analysis.
Recording and computation of acoustic indices are carried out
directly on edge devices built from low noise primo condenser
microphones and Teensy microcontrollers, using internal FFT
hardware support. Resultant indices are transmitted over a
Zigbee-based wireless mesh network to a destination server.
Benchmark tests of audio quality, indices computation and power
consumption demonstrate acoustic equivalence and significant
power savings over current solutions.

Index Terms—Acoustic sensor networks, edge computing, en-
ergy efficiency

I. INTRODUCTION

Traditional biodiversity survey methods involve the identi-
fication and logging of species, by experts in-situ, based on
what they see and hear at locations of interest. This implies
several disadvantages like the vast amount of time and money
to get constant results over a long period of time and a
wide geographical distance, lack of reliability due to human
error [1]. Based on the growing recognition of the ecological
significance of the acoustic environment [2], passive acoustic
monitoring is emerging as a promising solution to the urgent,
global need for new biodiversity assessment methods. Two
principle approaches to data collection currently exist: offline,
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programmable devices which require data to be periodically
collected, and wireless sensor networks (WSN) which transmit
raw audio files back to a central hub for acoustic analysis.

Offline devices require periodic collection of data which
incurs extra labour and limits scalability in remote areas.
Current WSN solutions do not include in situ monitoring and
incur power consumption which obviates application in off-
grid locations of key ecological interest. Although various
WSN schemes have been developed to increase bandwidth
efficiency [3], [4], sensor nodes are usually used for collecting
data and there is a neglect of its computing capability and the
potential benefits of being as a computing edge to process the
data. The latest implementation of WSN based IoT [5], for
accessing applications and services on wireless resource con-
strained networks1, has enabled the newly emerging Sensor-
as-a-cloud paradigm.

In this paper, we propose a low cost solution for an audio
recorder with onboard audio processing, embedded in a wire-
less sensor network based on a ZigBee protocol. The devel-
oped audio recorder can be used in several different use cases
for which no cost effective, scalable biodiversity monitoring
solution currently exists, such as to monitor pollinating insects,
or to assess the condition of tropical forests by observing
vocal animals [6], [7]. These use cases usually require a
programming interface to schedule the recording times and
change frequency according to application requirements and
hardware constraints. As some areas are hard to access, the
results are sent via a wireless interface to the server, so that
no manual data collection is needed. Additionally, it is crucial
to extend the battery life by an energy efficient use of the
components. A Fast Fourier Transformation (FFT) to represent
the audio signal in parallel to the recording saves memory
and time and enables the system to efficiently generate and
send acoustic indices to the server using a mesh network. A
proof of concept of a cost efficient acoustic sensor network
consisting of two nodes (recorders) and one server is also
demonstrated and assessed for biodiversity monitoring. The
main contribution of this paper is the following:

1) We develop an energy efficient wireless sensor network
for remote audio recording and onboard processing. The
low cost solution shows comparable performance to
expensive commercial products in terms of audio quality.
Moreover, wireless communications can further enable
the capability of remote and real time monitoring.

1The typical wireless sensor device we consider is with limited processing
speed to support IEEE 802.15.4-compliant radio transceiver.



2

2) We introduce the concept of edge computing and pro-
pose an effective computing strategy for an in/situ rapid
acoustic survey. The test results show that up to 84%
energy consumption can be saved using the local pro-
cessing capability provided by senor node itself.

3) We show that the proposed wireless sensor networks can
achieve acoustic equivalence and superior performance
over current solutions at a much lower cost. The pro-
posed edge computing strategy will be further deployed
and tested in real application scenarios, such as forest
reserve.

The remainder of the paper is the following: Section II
provides a brief overview of current technologies related
to wireless sensor networks, acoustic signal processing and
commercial solutions. Section III describes the proposed
system hardware architecture and software implementation.
The justification of the system, especially the evaluation of
acoustic equivalence, energy consumption and performance,
are described in Section IV. Section V summarizes the findings
of this paper and gives recommendations for future develop-
ments.

II. LITERATURE REVIEW OF ECOLOGICAL AND
TECHNOLOGICAL CONTEXT

Technologies for remote biodiversity monitoring have sev-
eral advantages over traditional field survey methods: they are
more efficient in cost and time, minimise habitat disturbance,
remove human error and inter-observer variation, and provide
permanent data records for future analyses [8]. There is
a growing interest in rapid acoustic survey and numerous
studies point to the potential for automated computational
analysis of acoustic data, or acoustic indices, as a reliable
and efficient method to support biodiversity monitoring (e.g.
[7], [9], [10], and [11]). Wireless acoustic sensor networks
are already used in several applications, however there is no
commercial device combining both approaches to compute
acoustic indices in situ. Although doing so means the loss of
permanent audio records, the gains are considerable: remote
acoustic monitoring has potential to revolutionise biodiversity
monitoring in signalling ecologically important changes, as
well as providing a proxy for biodiversity, over spatio-temporal
scales which are currently impossible to assess. However many
of the regions of critical ecological importance are remote
and without electrical grid, presenting a significant technical
challenge to the development of large scale acoustic sensor
networks [12]: the current approach of transmitting the raw
audio recordings obviates long-term deployment in off-grid
locations. Taking inspiration from current trends in network
computing, we propose a power-efficient and cost-effective so-
lution which computes indices in situ, vastly reducing the data
transmission load and therefore bringing power consumption
in line with battery or solar powered remote installation.

A. Wireless Sensor Network

The Internet of Things (IoT) is an emerging technology
which leads to significant changes in the way devices interact

with each other [13]. Wireless sensor networks (WSNs) are
one technology to enable the Internet of Things. Embedded
electronics, sensors, software, and a network interface allows
them to communicate with each other [14]. Sensors are usually
used to measure temperature, pressure, and sound, whereas
the microcontroller computes, analyses and coordinates the
communication with other nodes [15].

WSNs have three main challenges: the power supply, node
management and the network topology [16]. As the nodes
are often distributed in a wide area with sometimes restricted
access and powered through batteries, it is important to design
them to be as power efficient as possible. Power efficiency
does not only relate to the power supply, but it is a relevant
characteristic in the whole development process, from the
choice of hardware to the management and transmission of
data [16]. Another significant criterion is the management of
the remotely operating nodes, as they must operate unattended
and with restricted access. The possibility to remotely config-
ure the nodes and to implement them so they can organize
themselves is crucial, e.g. to find another communication route
when one route is not accessible [17], [18]. The third main
challenge is the network topology, which can be implemented
with a mesh network. Short distances between nodes are more
power efficient during the transmission than long distances
[19]. A mesh network topology, where nodes act as relays
and as routers, gives the required flexibility and reliable
communication [15].

These features of WSNs make it a suitable protocol for
remote acoustic sensor networks. In studies where data over a
wide range are required, WSNs are a cost and time efficient
alternative, especially as device power efficiency increase
and memory requirements drop [20]. Smart WSNs are not
only able to collect large volumes of data associated with
frequent sampling and/or long duration deployment, they are
also able to process and filter the data according to application
requirements, which otherwise would be a very time consum-
ing and costly process [21]. This allows collection of data
with programmable sampling regimes, over long time periods,
without the need to deploy experts in the field [22] whilst
also minimising habitat disturbance. The reducing costs and
improving quality of sensors, batteries and microcontrollers
accelerate the realization of WSNs for biodiversity. In this
paper, we apply WSN in acoustic monitoring, particularly,
with focus on the local computing capability of sensor node
on calculating acoustic indices.

B. Acoustic Signal Processing

Traditional biodiversity surveys are carried out by experts
in situ: species are identified and the tiem and location of their
appearance logged [23]. The intense research of indices for the
usage of biodiversity assessment has been doing in the last 30
years and is a complementary method for biodiversity studies
[11]. The basic form of using the technology is to record data,
i.e., audio files in this paper. Raw audio files generate vast
volumes of data which need to be collected and manually
processed with corresponding software tools [24]. The next
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step is to process and filter the data directly on nodes in the
field, which gives the opportunity to send only the result [8].
In addition to the transmission time, this method will also
accelerate the complete data collection and analysis process.

Different techniques focus on different kinds of audio
analysis: one approach is to use machine learning to attempt
to recognise specific species calls, however in tropical areas
where species are not all known, this is complex, and even in
temperate zones with fewer species, separation of individual
calls from a wider acoustic scene is non-trivial and has not
yet be reliably achieved in the wild [25]. An alternative is
to survey the entire acoustic community within the broader
acoustic environment or soundscape, and use acoustic indices
which aim to provide proxies for more general biodiversity
metrics such as species diversity of abundance [9], [26].

Background noises from wind, humans, or planes are a
challenging interference factor for acoustic indices, because
they can distort the results and must therefore be considered
carefully [11]. Several filters and methods can be used to
mitigate the effect of noise, e.g. amplitude threshold cut-
off filters or downstream methods and spectrum subtraction
[27], [28]. Dozens of indices have been proposed to date
[29]. For illustration purposes, we implement the Acoustic
Complexity Index (ACI), as it is reported to be relatively
insensitive to non-intermittent sounds such as airplane noise
with constant intensity character [11], [30]. The ACI can
be used to monitor bird songs under different environmental
conditions as it positively correlates with the singing activity
of birds [9]. The basis for the acoustic indices computation
is a Fast Fourier Transformation (FFT). Each signal can be
represented as a sum of several sine functions and its time
domain will be transformed into the frequency domain which
is required for the frequency analysis [31]. Using a window,
depending on the application either Hanning or Hamming,
reduces the disruptions at the changeover to the next frequency
bin [31].

The ACI at each frequency area is calculated as an average
of the absolute magnitude changes (D) and is divided by the
sum of all values of intensity (Ik) over the number of time
fractions (n) [9]

ACI =
D∑k=1
n Ik

(1)

C. Alternative Acoustic Recording Solutions

Commercial solutions for biodiversity assessment based
on sound recording are available on the market. The Solo
System [32], [33] is basically an instruction of suggested parts
which have to be bought, assembled and prepared with a
provided operating system. The functionality is restricted to
the recording of sounds, which will be stored on the SD card.
As the operating system is an open source file, it is completely
customizable and can be extended with further functionalities
like a wireless interface. However, onboard processing for
audio files based on a FFT spectrogram would not be feasible
due to hardware restrictions of the Raspberry Pi A (see Section
III-B1).

Energy optimized for 

a long battery life

Onboard 

processing

Recording 2

Recording 1Remote

server

Schedulable recording

Fig. 1. The proposed system architecture.

Soundscape Explorer Terrestrial [34] is the only device with
an acoustic signal processing. The device can calculate the
ACI in real-time, but as the other solutions, lacks a wireless
communication interface. Further acoustic indices cannot be
calculated with this solution. The battery pack lasts for about
two weeks which allows a schedule of 1 minute recording and
5 minutes pause.

The high-end product in this comparison is the SM3 from
Wildlife Acoustics [35]. Although it is a closed system it is
highly customizable in terms of recording times, recording
configuration and accessories used with the system. Wildlife
Acoustics offers software to analyse the audio files, the SM3
itself does not process the data. Due to the missing wireless
communication interface, the recorded data are stored on a SD
card and no transmission to the server is intended. The SM3
will be used as a comparison to the developed recorder in this
paper [28].

III. THE PROPOSED WIRELESS ACOUSTIC SYSTEM

A. System architecture

Figure 1 illustrates the proposed system architecture with
its requirements. Each recorder consists of a Teensy micro-
controller including a SD card, an audio board, a micro-
phone, XBee module, and a battery in a waterproof case.
The composition of these modules regarding their functional
range, performance, energy consumption and costs is justified
in Section III-B. Instead of two fully equipped recorders, as
illustrated in Figure 1, we use one device to record and process
the data, and another device, to relay messages only.

Each device can be individually configured to a user-defined
recording schedule and executes onboard processing tasks,
which prevents the need to save the audio files. Only the
calculated acoustic indices are sent to the server in a multi-
hop fashion, so that no data collection or external processing
are required. Each XBee module automatically searches the
fastest path to the server and relays the message. A detailed
description of the software implementation is given in Section
III-C.
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Fig. 2. Hardware setup.

B. Hardware design principles

This section describes the motivation for each component
in the wireless recorder, which is illustrated in Figure 2. Using
Digimesh, each node is a recorder and a router at the same time
and therefore only one type of setup is needed for the nodes
in the field. The total cost for one node is £97.10, without
battery.

1) Computing Board and Wireless Communication Inter-
face: Apart from the technical facts of different development
boards, the support and availability of tested libraries are also
a relevant consideration in hardware selection. We prefer to
use development boards supporting a built-in Digital Signal
Processor (DSP) module due to its significant increases in per-
formance [36]. The earliest version which supports a built-in
DSP module is the ARM Cortex M4 [37]. Another important
feature is the real-time clock (RTC), which is required to get
the correct time of the recordings. In addition, the RTC can
be used to wake up the board from sleep mode.

The powerful core in combination with a very effi-
cient energy consumption, high flexibility in terms of en-
abling/disabling modules, and the low material cost, justify
the decision to use a Teensy version 3.6 for the system
development. A 3V cell coin battery is added to retain the date
and time while the power is off (e.g. when the main battery is
empty). To connect the nodes and cover a wide recording area,
a mesh network with routers in between the nodes is a very
efficient solution. Furthermore, the transmission power and the
cost of the module is relevant for the decision. The XBee
module has been chosen as the wireless interface, because it
meets the requirements related to the range and the supported
network topology, and is well supported with a dedicated
library for the Teensy development board [38]–[40].

Digi have developed a proprietary mesh network protocol,
Digimesh, which is based on ZigBee, but with the feature that
no dedicated routing device is required. Each node can act as
a node, a controller and a router which makes the network
more flexible and no predefined route is required [41].

The Digimesh module is available in a standard variation
and in a PRO variation. The PRO module has an extended
range, but consumes more transmission power [41]. For the

Fig. 3. Program flow main file.

first tests and to verify which module fits best to the application
the standard module is used. A compatible pinout and the
usage of the same protocol allows it to exchange the module
at a later stage if needed [40], [42].

2) Audio interface: To add a high quality 16-bit audio to
the Teensy, an audio board is used, which supports a 44.1 kHz
sample rate [43]. It allows connecting stereo headphones to
listen to the audio files and mono as well as stereo input
for the recordings. The selected microphone is a single in-
put microphone with a signal to noise ratio of 80dB [44].
To reduce the background noise and to protect the Primo
EM172-Z1 microphone, a windshield can be mounted over
the microphone.

The audio library, which includes the FFT functionality,
runs on the microcontroller of the Teensy and not on the
microcontroller of the audio board. This means that the audio
add-on board is only used for the connection and configuration
of the microphone and to achieve the higher sample rate.
The audio board supports a lot more functionalities, such as
playing several audio files at the same time, mixing sound
files, and adding special effects. A potential to further save
cost and energy would be to develop a personalized add-on
board, which only supports the required functionality instead
of the full audio package.

3) Protection case: As the design of the case is not focus
of this paper, a plastic box with a hole for the microphone was
used for field testing. The final case should be weather and
shock-resistant, small and light to attach it easily in the trees
and camouflage designed to protect it from theft. To prepare
the case for future improvements the possibility to attach a
solar panel should be given.

C. Software design principles

During the setup of a node, some low-level configurations
are necessary to execute, specifically the setting of the time
and the configuration of the XBee module. The XBee modules
need to be configured to communicate in the same network,



5

enable the sleep mode and adjust the power. Configurations
and commands can easily be executed at the initial setup
with direct access to the modules and using a graphical user
interface or at a later stage using remote commands.

After the setup of the device, the loop function will be
endless called. Each time an alarm is triggered and the
startProcess() function is called. Within the function, four
steps are executed: Firstly the recording of the data, then the
analysis, followed by the ACI calculation. The last step is the
send function of the calculated value.

For testing purposes, there is the option to store the recorded
audio data on the SD card for further analysis. Otherwise
only the calculated FFT spectrogram is stored on the SD card
and a message with the ACI value is generated to send it to
the server. After the successful transmission of the calculated
acoustic index, the device will be set to sleep mode until the
next alarm is due.

Within this implementation the spectrogram array is stored
on the SD card and is read line by line for the ACI com-
putation. Another possibility is to calculate the ACI value
during the real-time generation of the spectrogram. In this
later case it would not be necessary to save the spectrogram
at all and this would improve the system performance. A
reference for the ACI value implemented in Python and runs
on a Raspberry Pi can be found from [45]. A program coded
in the scripting language Python takes about five to ten times
longer than a comparable program coded in the interpreted
language C++ [46]–[49]. Furthermore, the required memory
space for a Python program is almost double than that required
for a C++ program [48]. Nevertheless, the developed Python
code is a very good example to verify the results of the C++
coded FFT spectrogram and indices calculations.

For the wireless communication, each node is equipped with
a XBee S2C module supporting Digimesh. The benefit of
Digimesh is that each node can act as an end node, controller,
and router. Using Acknowledge messages enables the system
to verify the sending status. If the sending is successful, the
node is set to sleep mode to save energy consumption and
frees up the space in the message array. Otherwise the message
will be resent up to five times and will worst case be stored
on its own SD card . The message is limited to 73 Bytes and
consists of the header with an identifier, a timestamp and the
final acoustic indices [40].

D. Energy-efficient Decision Making For Edge Computing

In the wireless sensor network, the battery capacity of the
deployed sensors is usually limited. Energy management is
one of the most important design issues for the energy-hungry
sensors, which significantly affects the overall performance of
the network. Thus, an appropriate mechanism is needed to
decide when to perform edge computing locally on an edge
node or when to implement computation offloading from the
edge node to the remote central server. To propose a decision-
making policy for edge computing, we adopt two parameters
to characterize the profile of a computing task or an application
(i.e., acoustic signal processing) that needs to be processed:

the size of the data file related to the computing task, L,
and the application completion deadline, T . In addition, T is
expressed as a positive integer denoting the maximum number
of time slots that are required to process the computing task.
According to much existing literature such as [50], [51], when
performing the edge computing, i.e., the local processing,
the optimal energy consumption of the CPU hardware that
implements an optimal clock-frequency scheduling in each
CPU cycle of the chip via the Dynamic Voltage Scaling (DVS)
technology [52] can be approximated by the following formula

Ec = K
L3

T 2
, (2)

where the constant K is a scalable factor that reflects the
computation energy per CPU cycle as well as the possibility
that the CPU is able to complete the computing task by a given
deadline. K can be tuned according to field measurements
obtained in actual implementation.

Moreover, we consider to model the energy consumption
of the wireless transmission between the source sensor to the
remote server when assuming that the data file is offloaded
to the server for the central computing. Here, for simplicity,
we do not consider the additional energy cost incurred by the
central processing in the server while focusing on evaluation of
the energy consumption from the communication perspective.
Let the hop number of propagating the data file to the central
server be M and the channel state be g. According to exiting
study [53], since the physical layer and media access control
of the sensor node adopts the IEEE 802.15.4-based ZigBee
protocol, the communication energy cost incurred in both
transmit and receive modes of the sensor in a time slot can be
approximated by an empirical monomial function as follows

Ek = ρ
lnk
g
, (3)

where ρ is the communication energy coefficient and lk de-
notes the size of the data bits transmitted in the k-th time slot.
n is the order of monomial ranging within [1, 5]. Considering
that the maximum number of the time slots to complete the
computation offloading is T and the hop number is M , we can
further derive the total communication energy consumption as

Et = Mρ
(LT )n

g
T =

Mρ

g

Ln

Tn−1
. (4)

Let the speed of processing the computation task be λ = L
T .

Based on the above models (2) to (4), we can establish
the following rules as the decision-making policy for edge
computing and central computing, the goal of which is to
achieve energy-efficient management:

• If λ >
(
gK
Mρ

) 1
n−3

and n 6= 3 or if Mρ
gK > 1 and n =

3, Et > Ec always holds such that the sensors should
perform edge computing;

• If λ ≤
(
gK
Mρ

) 1
n−3

and n 6= 3 or if Mρ
gK ≤ 1 and n =

3, Et ≤ Ec always holds such that the sensors should
perform computation offloading for central computing.
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The rules can be proven by comparing the computation energy
cost Ec with the communication energy cost Et.

IV. SYSTEM EVALUATION

To explore the potential for the above described device
in ecoacoustic monitoring, we evaluated the prototype node
according to audio fidelity and equivalence of ecoacoustic met-
rics, energy efficiency, spatial range and temporal performance
as follows.

A. Audio recording and ACI calculation

To compare the developed recorder to a commercial prod-
uct, two tests have been done with the SM3 from Wildlife
Acoustics. The tests focus on the audio quality, rather than
battery life or other factors. The test tones and environmental
recordings are played back via a pair of gain-balanced Genelec
2030s (standard studio acoustic monitors with a flat frequency
response). Each device is positioned at a distance of 1.2 meters
from each speaker, in the same plane.

For the first test, sinusoidal test tones at different frequencies
are played back in the sound proofed studio to demonstrate
the clarity of hardware in the system.

In the second test, a series of 14 environmental recordings
with differing levels of acoustic activity (UK dawn chorus)
are played back in a soundproofed studio. Each sound file is
1 minute long and has previously been labelled by species
richness values (number of distinct species heard per minute)
and all relevant indices have been calculated, using the Python
Acoustic Indices library, which in turn has been validated
against Seewave and soundecology packages in R -library
(version 3.3.3) [45]. The sound files are recorded with the
Teensy and the SM3, and their indices are also calculated and
compared. As a reference value, the ACI is calculated based on
the original file, the .wav file from the SM3 and the converted
.raw from the Teensy file using the R-library.

The result of this test shows that, the ACI values calcu-
lated using the Teensy implementation with a FFT1024 are
approximately doubled compared to the calculated values by
the R-library (FFT512). Using the same FFT1024 window,
the values calculated by the Python implementation are very
close to the values calculated by the Teensy. There is only a
minimal variation with a maximum of 10%, but the general
trend, which is illustrated in Figure 4, is the same.

Differences between results from the Teensy and the Python
implementation can be due to different input methods. The
Python and R-library read out the audio files whereas the
Teensy plays back the audio files and makes a real-time
FFT1024 calculation. This means that the spectrogram gener-
ation of the Teensy is dependent on the internal audio instru-
ments, which calculate the spectrogram based on a recording
and not the already generated audio file content. Another
difference can be due to round-off errors, which can occur
during the spectrogram generation and the ACI calculation.

The first ACI value (Sound 2.wav), displayed in Figure 4, is
conspicuous as the discrepancy is particularly large. As both

Fig. 4. Environmental test-ACI values-Teensy vs Python implementation.

Fig. 5. Environmental test - ACI values calculated with the R-library.

calculations are based on the same recording, the reason can-
not be due to the microphone or other recording instruments.
The recording itself is very quiet and the one with the fewest
bird activities. This leads to small magnitude changes in the
spectrogram and can therefore be more affected by the round-
off errors than spectrograms with higher magnitude changes.

Comparing the absolute differences of the ACI values based
on the different recorders and the same library (R-library), we
show that the audio quality of the Teensy recordings is slightly
better than the SM3 recordings. Figure 5 shows the behaviour
of the recordings compared to the original audio files which
have been played back.

B. Edge vs centralized processing

So far we have proved that it is possible to use a low budget
development board for audio recording and in situ analysis. In
this section we demonstrate that this method is more efficient
than sending the audio file to the remote server and doing
centralized signal processing with more powerful software and
hardware tools.

The energy consumption for the transmission of a 1 min
audio raw file can be estimated based on the values from the
Teensy & XBee data sheets [40]:
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Fig. 6. Energy-efficient region under edge computing and central computing.

Transmission time =
size audio file

data rate
=

42600 bits

250kb
s

= 170.4 s

(5)

Energy consumption = Energy XBee + Energy Teensy

= 2.13 mAh + 4.06 mAh = 6.19 mAh.
(6)

To transmit a 1 min audio raw file, 6.26 mAh are needed
using the highest power level to achieve the maximum range
[40]. This value includes only the energy consumption for
the transmission of the file, the external audio processing
on the server is not considered in this calculation. As a
comparison, an onboard ACI calculation of a 1 min audio raw
file in addition to the transmission of the calculated acoustic
index takes 0.84 mAh (based on measurements, see Section
IV-C2). Although this comparison is only an estimation, it
clearly demonstrates the energy savings of 86% using onboard
processing.

To illustrate how the computation and the communication
factors affect the energy efficiency when the energy-efficient
decision-making policy is employed, we set the size of the
data file as L = 73 × 8 bits and the completion deadline
as T = 100 ms (the duration of each time slot is 2 ms).
The channel gain is specified as g = 0.5. According to the
real measurements reported in [54], the computation factor K
ranges in the order of 10−11 and the communication factor
ρ is in the order of 10−2. M is set to M = 2 as the two-
hop routing is adopted for data transmission, and n is set to
n = 4. Figure 6 shows the energy-efficient region with respect
to the computation and the communication factors, K and ρ,
under the edge computing and the central computing. From
this figure, it is easy to determine the best strategy to process
the computing task.

C. Comparison of energy consumption

To enable operations in remote areas, wireless nodes need to
be powered by battery and/or solar power. As the implementa-
tion has an impact on the energy consumption of the system,

different power saving strategies need to be considered. Fur-
thermore, the energy consumption of the system needs to be
determined under different recording schedules.

1) Power saving mode: There are different options to
reduce the energy consumption of the system [55]:

1) Sleep mode of XBee: The XBee is set to sleep mode
when not in use (e.g. during the recording). It will be wo-
ken up at the beginning of the send and receive function
and set to sleep mode afterwards on pin transition. This
saves 31-45 mAh, compared to the receive or transmit
execution of the XBee [40].

2) Sleep mode of Teensy: Using the Snooze.h library [56]
enables the Teensy to enter low power mode. The
relevant function of the library is to wake up the Teensy
after a specific period by using the RTC to keep the time
and wake up the Teensy on pin transition. Using only
the Teensy and the XBee, the Snooze.h library works as
expected and the current drops to below 1mA.

3) Disabling unused peripherals: Disabling unused modules
such as USB and Analog to Digital Converter also saves
power, the latter saving approximately 0.8 mA [57]. In
this study, the Teensy is powered over the USB interface,
as this is a convenient method to use a power bank.
But for the future work, it needs to be determined if it
is more efficient to use the USB interface only for the
node configuration and power the node in the field with
a battery pack directly connected to the pins 3.3 V and
GND.

2) Energy consumption: As a first step, the power con-
sumption of the individual features is measured. The results
are based on an 1h operation mode and are measured with an
USB digital power meter.

• Recorder in sleep mode: <1 mAh
• Recorder in IDLE mode: 86.3 mAh
• 1 min recording: 1.43 mAh
• ACI calculation (approx. 30s): 0.84 mAh
• Send/receive call:

– Best case (successful transmission - 1.4s): 0.18 mAh
– Worst case (6 resend attempts - 71.2s): 2.17 mAh

Using a schedule of a 1 min recording every 10 minutes
between 4 am-9 am and 5 pm to 10 pm results in a total energy
consumption of 147.3 mAh in case the sleep mode is set during
off time and a 2087 mAh in case the device goes only into
IDLE mode. Tab. I shows the total energy consumption of the
test using the proposed edge computing and central computing
(transmission only), respectively.

The central computing includes only the energy consump-
tion for the transmission of the file (to the server), the external
audio processing on the remote server is not considered in the
calculation. It is clear that the edge computing approach can
reduce the overall energy consumption. If we compare the ACI
processing and transmission alone, the energy consumption
can be saved by 83.7%. This schedule is only one example of
dynamic power management and the calculations have been
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TABLE I
TOTAL ENERGY CONSUMPTION BETWEEN EDGE COMPUTING APPROACH

AND CENTRALIZED APPROACH

Schedule (1 min
every 10 min)

Total 24h
(4 AM to 9 AM,
5 PM to10 PM)

Edge computing Central comp.
(trans. only)

Recording 10h
x 6 recordings/h 86 mAh 86 mAh

ACI
calculation

10h
x 6 calculations/h 50.4 mAh 0

Transmission
(Best case)

10h
x 6 transmit/h 10.8 mAh 375.6 mAh

Idle mode 1349 min 1940 mAh 1940 mAh
Total energy consumption 2087.2 mAh 2401.6 mAh

verified by running it for 24 h without a full sleep mode, as
there is still a problem with the usage of the Snooze.h library.

This arbitrary model shows that the Teensy has significant
power savings in comparison to current solutions, e.g. during
recording 20% compared to the Solo System and up to 280%
compared to the SM3 [32], [35].

So far what we have done is to implement a simple (up to
2 hops) ZigBee mesh network as a proof the concept. ZigBee
is a physical layer technique that has proven energy efficiency
in single hop transmission. However, in practise, we need
to cope with a large-scale network coverage by developing
a multi-hop mesh IoT network. Moreover, multi-tasking is
also needed not only for monitoring and collecting acous-
tic data, but also remotely maintaining and configuring IoT
devices. Therefore, development of higher layer networking
and application protocols is necessary to achieve system level
energy efficiency for large scale mesh network. The latest
IETF protocol stack (6LowPAN/IPv6/UDP/CoAP) has defined
the routing and application protocols for Low power and Lossy
Networks to facilitate the multi-hop connectivity. In our latest
work [58], we have successfully shown energy efficiency and
reliability of the proposed protocol stack using simulation tool.
In our future work, we will further develop such multi-hop
mesh network prototype and verify its energy performance in
practise.

D. Range tests

For the XBee S2C module a range of up to 1200 m is defined
in the specification with the usage of different antenna [40].
The module in this study uses an implemented wire antenna
connected directly to the PCB with a gain of 1.5-1.8 dbi [59].
There are further options with other integrated antenna or
connectors for external antenna to improve the antenna gain
and the maximum distance between two nodes.

Using the integrated antenna, two different power configura-
tions are set to measure the maximum distance where a reliable
communication between three nodes should be maintained.

The first configuration uses the lowest power level and a
disabled boost mode resulting in a stable communication up
to 25 m between the two end nodes , i.e., recorder 1 and 2
in Figure 1. The second test is configured with the highest
power level and an enabled boost mode and had a stable
communication up to 110 m between the two end nodes. Both

TABLE II
PERFORMANCE MEASUREMENTS.

Calculation of FFT spectrogram 61.8 s
Calculation of ACI value 28.3 s
Sending of messages

(Point-to-Point)
Best Case : 1.1 s

Worst Case : 71.2 s

Sending of messages
(three nodes with 2 hops)

Best Case : 1.4 s

Worst Case : 71.2 s

tests have been executed with a line of sight between the nodes
and under the same weather conditions (18◦C, 40 km/h wind,
70% air humidity and 120 m above zero).

To extend the range to the required 200 m either the XBee
PRO module needs to be used or an antenna. Both options
need further investigation, which are recommended for future
developments on the system.

E. Temporal performance analysis

To determine the system performance, several functions are
measured. The execution time to measure the time impacts the
system and is therefore only implemented for the tests. Test
setup:

• 100 repetitions for each sending case
• 1 minute of recording
• Spectrogram calculation and storage on the SD card
• Calculation of ACI
• Sending message to the server, with six resend attempts

if needed and storage on the SD card
• Point-to-point communication and WSN with three nodes
In this performance measurement, the message array over-

flow will not be considered in the overall system performance
as the scenario is very unlikely and highly dependent on the
scheduled interval. A message overflow can happen when the
alarm interval is higher than the total resending time. In such
a case, the message needs to be stored on the SD card.

The average values of the 100 repetitions are summarized
as follows:

The performance tests show that the FFT spectrogram calcu-
lation only needs 1.8 s longer than the recording itself and the
ACI calculation is approximately 50% of the recording time.
A 1-minute recording including the acoustic index calculation
and the transmission of the result within a three-node network
to the server only takes 91.5 s in the best case where the
message is received by the server within the first sending
attempt. Decreasing the total execution time of 91.5 s by the
length of the recording time itself leads to an extra effort of
31.5 s . This highlights the huge time benefit of using a WSN
for biodiversity compared to recording devices, where data
need to be manually collected and analysed.

To improve the performance of the ACI calculation, the
implementation can be changed to calculate the ACI in real
time with the recording and spectrogram generation rather than
from the finalized and stored spectrogram. This would save the
time it needs to read the spectrogram line by line. It needs to be
determined how this would affect acoustic indices, which are
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based on different spectrogram parameters. The Soundscape
Explorer Terrestrial promotes this real-time calculation of the
ACI without considering other acoustic indices [34].

V. CONCLUSION AND FUTURE WORK

The conclusion and the recommendations for further re-
search are presented as follows.

A. Conclusion

Passive acoustic monitoring is emerging as potential solu-
tion for cost-effective biodiversity monitoring, however offline
battery powered devices limit scalability and the transmission
of raw audio data is too power intensive for many remote,
off-grid sites of ecological interest. In this paper, we have
proposed the combination of in situ analyses and transmission
of ecoacoustic indices rather than raw audio using a wire-
less sensor network. A prototype device built from lost cost
hardware was described and evaluated for audio performance,
energy efficiency, spatial range and temporal performance.
These benchmark tests showed acoustic equivalence, both in
raw signal and calculation of example ecoacoustic metric, and
considerable power savings of up to 280% during the recording
time compared to current leading commercial offline solutions.
Range test and power tests demonstrate the prototype is
suitable for extended deployment in densely forested areas,
of typical conservation concern. Temporal tests show that an
acoustic index of a 1 min recording can arrive at the server
only 30 s after the recording has finished, affording near real-
time performance which could be of great value in tracking
endangered species, or identifying illegal activity such as
logging or poaching in protected areas.

B. Recommendations

The following recommendations are under the assumption
that the onboard processing based approach is more efficient
than the remote processing based approach, i.e., by sending
the computed acoustic indices to the server rather than the
complete audio file.

• For the proof of concept only one acoustic index has been
calculated, but for a comprehensive acoustic analysis,
further indices are required. The implementation and
testing, especially regarding the limited memory, should
be investigated for future work.

• To improve the system’s efficiency the ACI value can be
calculated during the FFT generation, and without saving
the spectrogram on the SD card. This would save some
operating time and the node can go to sleep mode earlier.

• An entire sleep mode of the system needs to be imple-
mented as this has a huge impact on the battery life.
Additionally, the integration of solar as a second power
source should be considered for a long-lasting operation.

• To improve the audio quality and to reduce the costs,
the breadboard needs be replaced by soldering the com-
ponents and keeping the crucial audio wires as short as
possible. As the recorders are meant to be deployed in a

larger area, there is the need to build a large number of
nodes and test the mesh network functionality.

• As already suggested in Section IV-D, the range between
the nodes can be extended using another antenna. A
detailed analysis to identify the balance between range
and power consumption might be an interesting topic for
future enhancements of the wireless recorders.
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