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A B S T R A C T
The maturity of 5G technology provides a guarantee for increasingly large communication networks,
while the resources required for communication and computation are also increasing, and reasonable
resource allocation can improve the efficiency of network communication and reduce the consumption
of communication resources. Existing deep learning methods have been able to predict network
traffic to a certain extent, so as to solve the communication efficiency and resource consumption
problems in the field of integrated sensing, communication and computation (ISCC) through rational
resource allocation. However, the following problems still exist: (1) The feature learning ability of the
prediction model is insufficient, and the prediction accuracy needs to be improved. (2) Powerful and
complex deep learning methods lead to an increase in the prediction cost of the model. To address
these problems, this paper proposes a deep learning method based on a lightweight hybrid attention
network. In order to capture the key features of 5G data more effectively, an efficient hybrid attention
mechanism (EHA) is proposed. After this attention is applied to convolution, the key information
can be well enhanced. We use depthwise separable convolution in feature extraction, which greatly
improves the efficiency of lightweight convolution layer (LC) in feature extraction. Combined with
the efficient hybrid attention mechanism (EHA), the proposed model has better lightweight properties.
Experimental results show that the model proposed in this paper has lower RMSE and MAE values
on the three datasets, as well as fewer parameters and computational effort compared to the baseline
scheme.

1. Introduction
With the rapid development of science and technology,

the way of life of human beings is gradually changing. The
development of the Internet of Things (IoT) gradually push
human society into the era of Internet of Everything, and
more and more devices are connected to the Internet, which
makes the scale and influence of the network expanding.
With the access of more and more devices, the traditional 4G
network can no longer meet the existing demand. With the
continuous development of 5G network in recent years, its
advantages gradually appear. Compared with 4G networks,
5G networks have higher data transmission speeds, lower la-
tency, greater network capacity, and higher reliability. Along
with the development of 5G technology, the scale of the
Internet of Things (IOT) is also getting bigger, which greatly
facilitates the rapid development of some fields such as
autonomous driving, smart cities, virtual reality, etc. [1].
However, the proliferation in the number of various devices
and sensors lead to an increasingly large amount of data
to be communicated, and the problem of optimizing the
allocation of resources in the field of integrated sensing,
communication, and computation (ISCC) become more and
more important. The proposal of integrated sensing and
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communication (ISAC) solves the problem of transmission
efficiency of communication data to a certain extent [2, 3].
Meanwhile, along with the development of artificial intelli-
gence, the application of machine learning algorithms to the
field of integrated sensing, communication and computation
(ISCC) become a research direction worth exploring [4].
Through the learning of historical data can be obtained to
a certain extent, the data trend in a certain period of time
in the future, a reasonable analysis of this trend can often
greatly optimize the allocation of resources, so the prediction
of network traffic become the key to the problem. At this
stage, many methods emerge for network traffic prediction
research. In general, network traffic prediction methods are
divided into two main categories: traditional statistics-based
methods and machine learning-based methods.

In earlier times, the problem of flow prediction is mainly
dealt with using traditional statistical methods. These meth-
ods rely mainly on the statistical characteristics and patterns
of historical data to make predictions. They usually use a
number of statistical techniques to analyze and model the
data and then use statistical models to make predictions. An
example is the autoregressive model (AR), which is best
characterized by its ability to make full use of prior data to
regress forecasts on later data. The proposal of differential
autoregressive moving average model (ARIMA) [5] makes
the time series problem more effectively dealt with, and
ARIMA also achieves good results in the neighborhood of
network traffic prediction. The article [6] made full use of
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the ARIMA model, in order to cope with the highly dynamic
nature of network traffic, the author divides the traffic signal
into two parts consisting of normal changes and abnormal-
ities consisting of sudden changes for separate treatment.
This enables better network traffic prediction and anomaly
detection. Article [7] proposed a network traffic prediction
model based on nonlinear time series ARIMA/GARCH.
The model combines the ARIMA model with the nonlinear
GARCH model. Thereby, the model can capture salient
traffic features not only on large time scales, but also on small
time scales, and has better prediction accuracy compared to
the FARIMA model. Article [8] utilized the autocorrelation
function for the exploration of trending and cyclical fea-
tures, while the product seasonal autoregressive integrated
moving average (ARIMA) model was used to achieve better
prediction results. Article [9] noticed the 𝛼-stable modeling
property in the time domain and the sparsity in the spatial
domain, proposed the 𝛼-stable model for network traffic
prediction. And good prediction performance is obtained
after the validation of simulation experiments. However, the
limitations of the linear model are gradually manifested with
the deepening of the research. Due to the complexity of
network traffic data characteristics, it is difficult for a single
linear model to achieve better prediction results. The pro-
posal of nonlinear prediction models alleviates this problem
to some extent. For example, Autoregressive Conditional
Heteroskedasticity (ARCH) model [10]. The article [11]
proposed a probabilistic jump prediction algorithm based
on the ARCH model to characterize the traffic data rate
dynamics of the dataset, which ensures a strong dynamic
configuration performance of the framework. Although the
nonlinear prediction model shows some degree of improve-
ment compared to the linear prediction model, it is still some
distance away from the expectation.

With the rapid development of machine learning, es-
pecially deep learning, the performance of network traf-
fic prediction is greatly improved. Meanwhile, along with
the continuous expansion of network size, the increasingly
large network traffic data also makes machine learning-
based methods increasingly superior to traditional methods.
Compared with traditional statistical methods, early shallow
learning methods such as Support Vector Regression (SVR)
[12] and Gaussian Process Model have many improvements
in network traffic prediction. And then, with the rise of
deep learning, its powerful prediction ability makes more
and more researchers start to apply it to network traffic
prediction. The proposal of Convolutional Neural Network
(CNN) [13] laid the foundation for a series of researches.
Later, Recurrent Neural Networks (RNN), Long Short-Term
Memory Networks (LSTM) [14], and Gated Recurrent Units
(GRU) [15] are widely used in time series prediction prob-
lems. The proposal of Temporal Convolutional Networks
(TCNs) [16] also greatly contributed to the study of time
series forecasting problems.

In summary, at this stage, most of the 5G network traffic
prediction as a kind of network traffic prediction is based
on deep learning methods. Although the huge dataset and

powerful arithmetic power make the deep learning models
have good results, there are still some problems:

• At this stage, many deep learning methods do not
accurately grasp the key data in the feature learning
stage of the model and enhance the ability to learn the
features of the key data, which leads to poor prediction
results.

• With the development of deep learning, models be-
come more complex. Too complex prediction model
will lead to the rise of prediction cost, which brings
some obstacles to the practical application of predic-
tion model.

In order to solve the above problems, this paper proposes
a deep learning method based on lightweight hybrid atten-
tion network. The main contributions are as follows.

• In the feature extraction stage, an efficient hybrid
attention mechanism (EHA) is proposed to enhance
the weight of key features in 5G data, so that the model
can better learn the spatio-temporal characteristics.

• Depthwise separable convolution is used in lightweight
convolution layer (LC), which greatly reduces the
parameters and computation cost of LC layer com-
pared with traditional convolution layer. And 1 × 1
convolution is used in the efficient hybrid attention
mechanism (EHA) to achieve lightweight.

• By comparing the proposed method with other main-
stream prediction methods on the datasets provided by
Telecom Italia, it is verified that the proposed method
has better prediction performance. Moreover, the
computational consumption experiments also demon-
strate the better lightweight property of the proposed
method.

2. Related work
Time series prediction and time series analysis have been

popular research topics, and 5G network traffic prediction
is an important part of the time series prediction. With the
rapid development of IoT, the growth rate of network traffic
is also considerable. At this time, reasonable and effective
5G network traffic prediction becomes crucial. Efficient net-
work traffic prediction can better lead to rational allocation
of network resources.

Most of the latest network traffic prediction is based
on deep learning methods, and this class of methods has
significantly better performance than traditional methods.
Jaffry et al. [17] proposed a network traffic prediction model
based on LSTM and compared it with ARIMA and FFNN
on a real dataset. The results show that LSTM has higher ac-
curacy and the model converges more easily. However, this
method only takes into account the temporal characteristics
of network traffic data and ignores its spatial characteristics.

Zhang et al. [18] proposed a network traffic prediction
model based on a densely connected convolutional neural
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network for the application scenario of network traffic pre-
diction on a city-wide scale. The model is able to capture
the spatio-temporal characteristics of the traffic data better,
and the parameter matrix based fusion scheme proposed by
the authors is able to make the performance of the model
go further. In validation experiments on the Telecom Italia
dataset, the model has lower RMSE values compared to the
traditional HA, ARIMA and LSTM models. However, this
method cannot fully learn complex spatial features through
traditional convolution alone, and complex neural networks
also increase the consumption of computing resources.

Zhang et al. [19] proposed a hybrid spatio-temporal
network (HSTNet) to address the above problems. By in-
troducing deformable convolutional units, temporal features,
and an attention mechanism to improve the ability to extract
complex spatial features, the accuracy of prediction, and the
robustness of the model. However, the use of deformable
convolutions has to some extent increased the computational
cost of the prediction model.

Mohseni et al. [20] investigated the effectiveness of
various deep learning methods for network traffic prediction.
After experimental evaluation, FCSN and 1D-CNN have the
smallest MAE value (0.29) . But 1D-CNN has less num-
ber of parameters, complexity and smaller execution time.
Rao et al. [21] proposed a deep learning method that con-
siders dynamic non-local spatial correlation, self-attention
and correlation of spatio-temporal feature fusion. In this
method, NLG-NLAM is proposed to accurately capture the
correlation between features in non-local spatial areas, and
a calibration layer is designed to clarify the key role of
different periodic features and eliminate the influence of
irrelevant features on prediction.

Compared with traditional methods, the above deep
learning methods have different aspects of progress, but
they also have shortcomings in some aspects. 5G network
traffic data has strong spatiotemporal characteristics, but
the previous methods can not fully learn the dependency
of 5G network traffic data in the spatio-temporal domain,
especially the key features in the time domain lack a certain
ability to capture. Therefore, we hope to propose a solution to
the problem of insufficient ability to capture key features in
the spatio-temporal domain. In addition, most of the above
deep learning methods have a high number of parameters
and complexity, so we hope to reduce the computational
consumption of the model as much as possible on the
premise of ensuring the prediction performance.

3. Data
3.1. Dataset

The dataset used in this paper is from Telecom Italia
[22]. The Telecom Italia dataset is the most widely used open
dataset in the network traffic prediction research literature.
The dataset consists of traffic time series from November 1,
2013 to January 1, 2014, at 10 min intervals, and consists of
three segments: short message service (SMS), call service
(Call), and internet access (Internet). The entire spatial area

is divided into 100 × 100 grids, indicating that the Milan
area is a superposition of 10,000 cells, each of which has a
size of approximately 235 × 235 square meters, and whose
values represent the statistics of incoming and outgoing
traffic to and from the area. By analyzing the call detail
records generated by the Telecom Italia cellular network,
different attributes are extracted for each grid every 10
minutes, including SMS, Call and Internet usage data. Based
on this dataset, univariate and multivariate spatio-temporal
prediction problems can be considered. The time span is
from 00:00 on November 1, 2013 to 00:00 on January 1,
2014. The dataset can be denoted as 𝐕𝑐,𝑡, where 𝐕𝑐,𝑡 has
four dimensions [𝑐, 𝑡,𝐻,𝑊 ], 𝑐 denotes the type of data,
including SMS, Call, and Internet. 𝑡 denotes the current
moment, where 𝑡 belongs to {0, 1, 2, ..., 𝑇 }, and 𝑇 denotes
the maximum value of the moment. The whole area is
divided into 𝐻 × 𝑊 blocks, 𝐻 and 𝑊 denote the number
of rows and columns of the cell respectively. 𝐕𝑐,𝑡 can be
described as Eq. (1).

𝐕𝑐,𝑡 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣
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⎥

⎥

⎦

, (1)

where 𝑣(ℎ,𝑤)
𝑐,𝑡 represents the 5G network traffic data at mo-

ment 𝑡 on partition (ℎ,𝑤).
3.2. Data Analysis

The complexity of 5G network traffic increases the diffi-
culty of feature extraction, especially its nonlinear relation-
ship in time and space domains. For this reason, a detailed
data analysis is needed to fully exploit its characteristics in
the time and space domain, thus making the prediction of 5G
network traffic more accurate.
3.2.1. Time Domain Correlation

We select 24 hours of data from the same region to
analyze, with a time interval of 10 minutes, the results of
which are shown in Figure 1, Figure 2 and Figure 3. It
contains three data types (SMS, Call, Internet) from the
Telecom Italia dataset. The horizontal axis of the graph
represents the sampling time. The vertical axis of the graph
represents the activity of the different types of data. As
can be seen from the graph, the traffic data itself shows
a heterogeneous distribution within 24 hours in the same
area. For example, the number of hours of text messages
(SMS) and calls (Call) is significantly lower at night than
during the day. On the other hand, internet traffic data is not
significantly lower at night than during the day due to its own
characteristics. However, the three types of traffic data are
generally correlated, and all of them have the characteristic
of more daytime and less nighttime, which is also in line with
the actual situation.

Then we select the data of the region in a week’s time to
be analyzed, and the results are shown in Figure 4, Figure 5
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Figure 1: Time-domain distribution of 24-hour flow data
(SMS).
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Figure 2: Time-domain distribution of 24-hour flow data (Call).

and Figure 6. From the figure, we can easily observe that the
traffic data has obvious periodicity, such as the periodicity
presented by every 24 hours. At the same time, the traffic
data is also characterized by burstiness. For example, in
the 168-hour time-domain distribution graph of SMS, the
traffic data from 50-75 hours is significantly more active
than the other hours. This is due to the fact that the day was
Christmas, so it lead to a surge in traffic data. Therefore, the
processing of sudden traffic data is also the key to improve
the prediction ability of the model.
3.2.2. Spatial Domain Correlation

5G network traffic data has both temporal and spatial
characteristics, so the analysis of spatial characteristics is
equally important. Figure 7, 8 and 9 show the spatial dis-
tribution of three datasets in different regions at the same
time. We can find that although the data in the three datasets
are different in spatial distribution, there are similar spatial
differences in general. From a global perspective, the higher
activity tends to be in the center of the city, while the activity
is relatively low at the edge of the city. From the local point
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Figure 3: Time-domain distribution of 24-hour flow data
(Internet).

0 25 50 75 100 125 150 175
Time (hour)

0

5

10

15

20

Ac
tiv

at
io

n 
(S

M
S)

Ground Truth

Figure 4: Time-domain distribution of 168-hour flow data
(SMS).

of view, 5G network traffic is correlated within a certain
range. For example, the center of the city is more active
but with similar values. This shows that 5G data is globally
different and locally relevant. The spatial characteristics of
5G network traffic require targeted processing to obtain
better prediction results.

We use the Pearson correlation coefficient measure [23]
to further analyze the spatial correlation of the data. The
Pearson correlation coefficient measure is widely used in
correlation analysis and is defined as shown in Eq. (2).

𝜌 =
𝑐𝑜𝑣(𝑥(𝑟,𝑐)𝑡 , 𝑥(𝑟

′,𝑐′)
𝑡 )

𝜎𝑥(𝑟,𝑐)𝑡
𝜎
𝑥(𝑟

′ ,𝑐′)
𝑡

, (2)

where 𝑐𝑜𝑣(𝑥(𝑟,𝑐)𝑡 , 𝑥(𝑟
′,𝑐′)

𝑡 ) denotes the covariance of neighbor-
ing regions 𝑥(𝑟,𝑐)𝑡 and 𝑥(𝑟

′,𝑐′)
𝑡 , and 𝜎𝑥(𝑟,𝑐)𝑡

and 𝜎
𝑥(𝑟

′ ,𝑐′)
𝑡

denote the
standard deviation of regions 𝑥(𝑟,𝑐)𝑡 and 𝑥(𝑟

′,𝑐′)
𝑡 , respectively.
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Figure 5: Time-domain distribution of 168-hour flow data
(Call).
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Figure 6: Time-domain distribution of 168-hour flow data
(Internet).

We perform correlation analysis and use cell (7, 7) as
the target cell, and the result is shown in Figure 10. From
the figure, we can find that the regions near the target cell
usually have high correlation coefficients, which indicates
the strong correlation of the neighboring regions. However,
the distance is not the only factor that affects the correlation.
Some regions that are far from the target cell still have strong
correlation. This shows that 5G network traffic does not only
have local correlation, but also has non-local correlation.
Therefore, it is necessary to capture the corresponding key
features for these factors to improve the predictive ability of
the model.

4. Proposed Approach
5G network traffic data is a kind of complex data with

both temporal and spatial characteristics, and most of the
existing deep learning methods can handle time-series data
well. However, there are still shortcomings in the ability
to capture key features in the temporal and spatial domain.
Moreover, as the computational volume of deep learning
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Figure 7: Distribution of 5G network traffic data in terms of
spatial activeness (SMS).
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Figure 8: Distribution of 5G network traffic data in terms of
spatial activeness (Call).

models becomes larger, their computational costs also in-
crease. Aiming at the above problems, This paper pro-
poses a deep learning method based on hybrid attention
and lightweight. The framework of the method is shown
in Figure 11, where LC stands for lightweight convolution
and EHA stands for efficient hybrid attention. The first is
the preprocessing of the data, so that the data is made
more suitable for neural network feature extraction by means
of regularization and normalization, etc., after which the
data is divided into two groups to be processed separately
and independently. One group of data is short-term data,
specifically the first 1 hour, 2 hours and 3 hours of the
prediction point of the sampling point data. The other set
of data is long term data, specifically the sampling point
data at the same time 1 day, 2 days and 3 days before the
prediction point. The data in this dataset are grid data col-
lected according to time intervals, and the data of each time
point is a 100 × 100 grid. The article [18] utilizes DenseNet
for network traffic prediction and proves that DenseBlock
has powerful performance. In the feature learning stage,
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Figure 9: Distribution of 5G network traffic data in terms of
spatial activeness (Internet).
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Figure 10: 5G network traffic spatial correlation analysis map.

based on DenseNet, we use LC layer for efficient feature
extraction and EHA layer for weight enhancement of key
features. In the LC layer, we use 1 × 1 convolution and
depthwise separable convolution [24] to reduce the number
of parameters and calculation consumption on the premise of
ensuring a certain feature extraction capability. In the EHA
layer, we use hybrid attention combining channel attention
and spatial attention after the convolutional operation to
improve the model’s learning ability. Moreover, we use effi-
cient channel attention (ECA) [25] as the channel attention
mechanism in EHA. We apply SEBlock [26] to the end of
feature learning to capture key features by strengthening the
weights of important channels. A fusion scheme based on
parameter matrix is proposed to fuse features of different
granularities [18]. We use this fusion method to fuse the
output features of different granularities, and the result is

processed by the sigmoid function to obtain the prediction
result. Finally, the prediction result and the real value are
input into the evaluation function to get the loss, so as to
evaluate the prediction ability of the model.
4.1. Lightweight Convolution Module

The excellent contribution of convolutional neural net-
works to fields such as computer vision proves their pow-
erful feature extraction ability and allows convolution to
be applied to more fields. 5G network traffic has strong
local correlation, and properties such as local awareness of
convolution can capture the features of 5G network traffic
very well. Therefore, we use convolution for its feature
extraction. However, the effect of pure convolutional neural
network is not outstanding, which makes the model has large
limitations. The residual network (ResNet) proposed by He
et al. [27] breaks through the depth limitation of neural
networks, which makes the development of deep neural net-
works guaranteed. Subsequently, the article [28] proposed
DenseNet, in which a densely connected DenseBlock is used
to implement and enhance feature reuse, which can make
the information flow between the layers of the network to be
maximized. Therefore, in the feature learning module, we
use the optimized DenseBlock for feature extraction.

While most convolution modules have powerful perfor-
mance, they are often accompanied by large computational
effort and high complexity. We reduce the computational
cost of the model by using depthwise separable convolution.
Depthwise separable convolution divides the standard con-
volution into two steps: depthwise convolution is responsible
for processing the input feature maps on different channels,
and pointwise convolution is responsible for linearly com-
bining the outputs of depthwise convolution. This design
allows the model to reduce the number of parameters and
computational complexity while still maintaining good fea-
ture representation.

We set the shape of the input image as 𝐻𝑖 × 𝑊𝑖 × 𝐶𝑖,where 𝐶𝑖 is the number of channels, 𝐻𝑖 and 𝑊𝑖 are the width
and height of the image respectively. The convolution kernel
size is𝐹 ×𝐹 and the output feature map format is𝐻𝑜 ×𝑊𝑜 ×
𝐶𝑜. The step size of the convolution process is 1, no padding
is used, and the bias is 0. At this point, the formula for the
number of parameters 𝑃𝑐 of the regular convolution can be
expressed as follows,

𝑃𝑐 = 𝐹 × 𝐹 × 𝐶𝑖 × 𝐶𝑜. (3)
The computational volume 𝐶𝑐 of the regular convolution can
be expressed as follows,

𝐶𝑐 = 𝐹 × 𝐹 × 𝐶𝑖 ×𝑊𝑜 ×𝐻𝑜 × 𝐶𝑜. (4)
Depthwise separable convolution consists of two steps,

depthwise convolution and pointwise convolution. It divides
the ordinary convolution into two separate operations for
processing spatial regions and channels. In the depthwise
convolution part, there are 𝐶𝑖 single-channel convolution
kernels. Without changing the depth of the input feature

Jian Su et al.: Preprint submitted to Elsevier Page 6 of 15



Traffic Prediction for 5G: A Deep Learning Approach Based on Lightweight Hybrid Attention Networks

LC EHA

Feature Learning

… EHALC LCEHA EHA

LC EHA

Feature Learning

… EHALC LCEHA EHA

𝜎

Loss

Ground Truth

Pred

Feature Fusion
BN

ReLU

1×1

BN
ReLU

DSC

BN
ReLU CA

SA
BN

ReLU SE

Hour

Day

Figure 11: Overall structure of the model.

map, the convolution kernels perform the convolution oper-
ation on each channel separately, and the number of channels
of the output feature map is still 𝐶𝑖. At this point the shape
of the feature map is 𝐻𝑡 × 𝑊𝑡 × 𝐶𝑖.The formula for the
number of parameters 𝑃𝑑 of the depthwise convolution can
be expressed as follows,

𝑃𝑑 = 𝐹 × 𝐹 × 𝐶𝑖. (5)
The computational volume 𝐶𝑑 of the depthwise convolution
can be expressed as follows,

𝐶𝑑 = 𝐹 × 𝐹 × 𝐶𝑖 ×𝑊𝑜 ×𝐻𝑜. (6)
Next is the part of pointwise convolution, the function of
pointwise convolution is mainly through the use of 1 ×
1 convolution kernel to upgrade or downgrade the feature
map, so as to merge the messages between the channels.
The shape of the convolution kernel is 1 × 1 × 𝐶𝑖 and the
number of convolution kernels 𝐶𝑜 is the number of channels
in the output feature map. The number of parameters 𝑃𝑝 for
pointwise convolution can be expressed as follows,

𝑃𝑝 = 1 × 1 × 𝐶𝑖 × 𝐶𝑜. (7)
The computational volume 𝐶𝑃 for pointwise convolution
can be expressed as follows,

𝐶𝑃 = 1 × 1 ×𝑊𝑜 ×𝐻𝑜 × 𝐶𝑖 × 𝐶𝑜. (8)
The parametric quantity 𝑃𝑎 of the depthwise separable

convolution can be expressed as follows,
𝑃𝑎 = 𝐹 × 𝐹 × 𝐶𝑖 + 1 × 1 × 𝐶𝑖 × 𝐶𝑜. (9)

Table 1
Comparison of depthwise separable convolution examples.

Method Parameters Computational volume

DSConv 411 14796
Conv 3456 124416

The formula for its calculation quantity 𝐶𝑎 can be expressed
as follows,
𝐶𝑎 = 𝐹 ×𝐹 ×𝐶𝑖×𝑊𝑜×𝐻𝑜+1×1×𝑊𝑜×𝐻𝑜×𝐶𝑖×𝐶𝑜. (10)

We perform an example algorithm using the above for-
mulas, and the algorithm results are shown in Table 1.We
hypothetically assume that the size of the input feature map
is 8 × 8 × 3, the kernel size is 3 × 3, the step size is
1, there is no padding, and there is no bias. The size of
the output feature map is 6 × 6 × 128. From the table,
we can find that both the number of parameters and the
amount of computation, the value of the depthwise separable
convolution is much smaller than that of the conventional
convolution. It can be proved that the depthwise separable
convolution can effectively reduce the computational cost
compared with the conventional convolution.

The structure of the lightweight convolution module is
shown in Figure 12. As can be seen from the figure, we do
not use traditional convolution in the feature extraction stage,
but a more efficient depthwise separable convolution. At the
same time, we also use 1 × 1 convolution operation to reduce
dimension, so as to further reduce the number of parameters
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Figure 12: Structure of the lightweight convolution module.

in the model. We first use the BN layer to normalize the
features, then pass the obtained feature data through the
ReLU activation function, and then use 1 × 1 convolution
operation reduces the dimensionality of features. The ReLU
activation function is expressed as,

𝑅𝑒𝐿𝑈 (𝑥) = max{0, 𝑥}. (11)
Then the feature data is also passed through the BN layer and
the ReLU activation function, and the feature extraction is
performed using the depthwise separable convolution. The
feature data is first deeply convolved, and the operation of
the convolution kernel does not change the dimension of the
input feature. After the depthwise convolution operation, the
1 × 1 convolution kernel is used for pointwise convolution to
change the feature dimension and finally output the extracted
feature.
4.2. Efficient Hybrid Attention Module

However, relying solely on convolution does not achieve
good results in performing feature learning for 5G net-
work traffic. The emergence of the attention mechanism
allows the model to adaptively select and weight the im-
portance of features to further improve the performance of
the model. We add channel attention and spatial attention
after the lightweight convolution module, and redistribute
the weights of the features extracted by convolution through
the attention mechanism, so that the model focuses on the
regions with higher contribution values.

We consider the use of efficient hybrid attention mecha-
nisms to enhance the performance of the model. The channel

attention mechanism is responsible for paying attention to
the relationship between different channels in the feature
map, and can dynamically adjust the importance of different
channels to better capture key feature information between
different channels. The spatial attention mechanism is re-
sponsible for focusing on the relationship between different
spatial locations in the feature map, and dynamically adjust-
ing the importance of different channels to have higher atten-
tion weights on the more important regions. The weight of
key features in 5G data is enhanced through hybrid attention,
so as to better learn the characteristics of 5G data in the
spatio-temporal domain. The convolutional block attention
module (CBAM) proposed by Woo et al. [29], combines the
two types of attention mechanisms to improve the model
performance significantly. However, the channel attention
mechanism in CBAM uses a large number of fully connected
layers, which increases the number of parameters and com-
putation cost of the model. To achieve a lightweight model,
we use efficient channel attention (ECA) as the channel
attention mechanism in the EHA, which reduces the amount
of parameter computation by using a one-dimensional con-
volution. After the channel attention processing, we use
the spatial attention mechanism to enhance the weight of
key features. In the final stage of feature learning, we use
SEBlock to adjust the importance of different channels, so
that the model can better capture the key features.

The structure of the efficient hybrid attention module
is shown in Figure 13. Where (a) represents the attention
mechanism for key feature enhancement after the convolu-
tion operation, and (b) represents the attention mechanism

Jian Su et al.: Preprint submitted to Elsevier Page 8 of 15



Traffic Prediction for 5G: A Deep Learning Approach Based on Lightweight Hybrid Attention Networks

BN ReLU
Avg 

pool

1×1

Conv
𝜎 1×1

Conv
𝜎

Input Output

Max

Avg

Channel attention Spacial attention

(a)

BN

ReLU

Avg pool

Linear

ReLU

Linear

𝜎

Input

Output

SE

(b)

Figure 13: Structure of the efficient hybrid attention module.

for adjusting the importance of channels after the entire fea-
ture learning stage. We call these two parts efficient hybrid
attention mechanism. We take the feature map output from
the convolutional layer as the input to the hybrid attention
module𝑋(ℎ,𝑤)

𝑖 . First, a normalization operation is performed
on it and the ReLU activation function is used to obtain
the feature map 𝑋(ℎ,𝑤)

𝑝 . The computation is expressed as

follows:
𝑋(ℎ,𝑤)

𝑝 = 𝑅𝑒𝐿𝑈 (𝐵𝑁(𝑋(ℎ,𝑤)
𝑖 )). (12)

Subsequently, the feature map 𝑋(ℎ,𝑤)
𝑝 enters the efficient

channel attention, and after average pooling, one-dimensional
convolution, and sigmoid operations to obtain the channel
weights 𝑊 (ℎ,𝑤)

𝑐 , multiply the weights 𝑊 (ℎ,𝑤)
𝑐 with the input
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𝑋(ℎ,𝑤)
𝑝 to obtain the output 𝑋(ℎ,𝑤)

𝑐 . Which is expressed as:
𝑋(ℎ,𝑤)

𝑐 = 𝑊 (ℎ,𝑤)
𝑐 ⋅𝑋(ℎ,𝑤)

𝑝 . (13)

Finally, the feature map 𝑋(ℎ,𝑤)
𝑐 enters into the spatial at-

tention part, which is respectively subjected to maximum
pooling and average pooling operations and spliced, the
spliced data is input into the convolution kernel size of 7 × 7
convolution, and finally a sigmoid operation is performed
to get the spatial weights 𝑊 (ℎ,𝑤)

𝑠 . multiply the weights
𝑊 (ℎ,𝑤)

𝑠 with the input 𝑋(ℎ,𝑤)
𝑐 to get the output 𝑋(ℎ,𝑤)

𝑓 . The
computation is expressed as follows:

𝑋(ℎ,𝑤)
𝑓 = 𝑊 (ℎ,𝑤)

𝑠 ⋅𝑋(ℎ,𝑤)
𝑐 . (14)

At the end of feature learning, we pass the input feature
𝑋(ℎ,𝑤)

𝑟 through BN layer and ReLU activation function to get
𝑋(ℎ,𝑤)

𝑎 . Which is expressed as:
𝑋(ℎ,𝑤)

𝑎 = 𝑅𝑒𝐿𝑈 (𝐵𝑁(𝑋(ℎ,𝑤)
𝑟 )), (15)

and then input it into channel attention. First, the feature data
is processed with average pooling, then it passes through
the linear layer, then ReLU activation function is used to
process it, and then through a linear layer, it is entered into
the sigmoid function to obtain the weight 𝑊 (ℎ,𝑤)

𝑜 . Finally,
multiply 𝑋(ℎ,𝑤)

𝑎 by 𝑊 (ℎ,𝑤)
𝑜 to get 𝑂(ℎ,𝑤)

𝑓 , which is expressed
as:

𝑂(ℎ,𝑤)
𝑓 = 𝑊 (ℎ,𝑤)

𝑜 ⋅𝑋(ℎ,𝑤)
𝑎 . (16)

The efficient hybrid attention module makes the pro-
cessing of 5G network traffic data more targeted, with the
model giving higher weights to key data as a way to im-
prove the model’s prediction accuracy. It also has lower
parameters and computation costs while ensuring predictive
performance.

5. Experiments
This section shows the experimental part in detail. First,

we describe the data preprocessing procedure and the setting
of experimental parameters. And we introduce the evalua-
tion indexes. Then, we compare and analyze the performance
of the method proposed in this paper with previous pre-
diction models and conduct ablation experiments. We also
conduct experiments to compare the parameters and com-
putational quantities. Finally, we analyze the comparison of
the predicted results.
5.1. Data Pre-processing and Parameter Selection

The dataset we used is an open dataset provided by
Telecom Italia. The original dataset has a sampling interval
of 10 min, and such a sampling interval leads to a lower
efficiency of the whole experimental process and a higher
overhead of the prediction model [18]. Together with the fact
that a large amount of traffic data in this dataset has a value of
0, we therefore aggregate the traffic data on an hourly basis.

We use the last 168 hours of data for model prediction and
the remaining portion of the dataset for model training. In
fact, due to the lack of historical data for the first 72 hours of
training, the actual available training dataset is 1248 hours
after 72 hours. In addition, in this paper, sigmoid is used for
the activation output of the model, so min-max is used for
normalization to scale the flow into [0, 1], and then finally
the predicted values are rescaled back to normal values for
evaluation.

The environment used for the experiments in this paper
is python 3.9.16, numpy 1.23.5, pytorch 1.13.1. The basic
hardware configurations of the experimental platforms are
AMD R7-6800H, NVIDIA RTX 3060, and 16GB of mem-
ory. The optimizer used for the model is ADAMW [30],
which is an improved version of the ADAM [31] optimizer.
It improves the performance and robustness of the model by
introducing a weight decay mechanism to better control the
update of weights. The initial learning rate is set to 0.01 and
then decays as the epoch increases. In the LC layer, a filter
with a kernel size of 1 × 1 is used before the depthwise
separable convolution operation, a depthwise convolution
filter has a kernel size of 3 × 3, and a pointwise convolution
filter has a kernel size of 1 × 1. In the hybrid attention layer,
average pooling and a filter with a kernel size of 7 × 7 are
used, and the activation functions are sigmoid and ReLU.
5.2. Evaluation Indicators

In this paper, two evaluation metrics are used to assess
the model, root mean squared error (RMSE) and mean
absolute error (MAE).

RMSE stands for Root Mean Square Error and is a com-
monly used metric to assess the performance of regression
models. It is used to measure the difference between the
predicted values and the actual observed values. RMSE is
suitable for assessing the performance of a regression model
in a continuous numerical prediction task and its formula is
shown below:

𝑅𝑀𝑆𝐸 =

√

√

√

√

√

1
𝑋 × 𝑌

𝑋
∑

𝑥=1

𝑌
∑

𝑦=1
(𝑃 (𝑥,𝑦) − 𝑃 (𝑥,𝑦))2. (17)

MAE stands for Mean Absolute Error, which is a com-
monly used metric for assessing the performance of re-
gression models. Unlike RMSE, MAE does not involve
squaring operations, but rather calculates the mean of the
absolute differences between the predicted values and the
actual observed values. Therefore MAE is more robust and
insensitive to outliers, and thus can better reflect the average
difference between predicted and actual values.The formula
for MAE is shown below:

𝑀𝐴𝐸 = 1
X × 𝑌

𝑋
∑

𝑥=1

𝑌
∑

𝑦=1

|

|

|

𝑃 (𝑥,𝑦) − 𝑃 (𝑥,𝑦)|
|

|

. (18)

Where 𝑃 (𝑥,𝑦) is the predicted value of the model and 𝑃 (𝑥,𝑦)

is the true value.
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Figure 14: Loss variation (SMS).

5.3. Overall Performance
Before exploring the performance of the model we an-

alyze the change in the value of the error loss between the
predicted and true values of the model with successive meta-
iterations as a way of verifying whether the model converges
or not. We train and test the model on SMS, Call, and Intenet
datasets respectively, and the results are shown in Figure
14, Figure 15 and Figure 16. It can be seen from the figure
that on the SMS dataset the training loss plateaus around
50 epochs and the training loss converges around 25 epochs.
However, on the Call dataset the convergence is significantly
slower, while on the Internet dataset the training loss oscil-
lates slightly around 60 epochs, but converges quickly. This
shows that the model is able to reach the convergence state
very quickly, thus effectively verifying the reliability of the
model.

In order to verify the prediction performance of the
model proposed in this paper, we conduct comparative ex-
periments on the models. The datasets used for the ex-
periments are SMS, Call and Internet, and the evaluation
indicators are RMSE and MAE. The experiments are con-
ducted on the lightweight hybrid attention model proposed
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Figure 15: Loss variation (Call).

in this paper as well as some of the existing network traffic
prediction models including HA, ARIMA, RNN, LSTM
[32], STDenseNet [18] and HSTNet [19]. The results of the
experiments are shown in Table 2, Table 3 and Table 4.

From the comparison of experimental results, our model
outperforms the existing prediction models on all three
datasets. The historical average method (HA) only calculates
the average of the existing historical data and lacks the ability
to extract more feature correlations from the data itself.
ARIMA only considers the linear relationships in the data,
which leads to poor results. The above statistical methods
are unable to achieve the desired prediction effect due to
their own limitations. Deep learning methods such as RNN
and LSTM are able to deal with temporal data sequences
better, but it is difficult to deal with the spatial correlation
of the 5G traffic data. STDenseNet and HSTNet are able to
combine temporal correlation and spatial correlation, But
they cannot capture the key features well in the feature
learning phase. Our method better captures the key features
in the spatio-temporal domain through an efficient hybrid
attention mechanism (EHA), so it can get better results.
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Figure 16: Loss variation (Internet).

Table 2
Results of model performance comparison (SMS).

Dataset approach RMSE MAE

SMS

HA 49.2654 27.0625
ARIMA 38.1265 24.7264
RNN 33.2232 20.3322
LSTM 30.2165 17.9926
STDenseNet 24.9297 15.2868
HSTNet 24.6212 14.9012

Ours 23.9793 14.7603

Meanwhile, in order to explore the key factors affect-
ing the performance of the model, we conduct ablation
experiments and the results are shown in Table 5, Table
6, Table 7. where DSConv stands for depthwise separable
convolution and EHA stands for efficient Hybrid Attention.
On the SMS dataset, DSConv provides a large model boost,
while EHA provides a relatively small model boost. There
is a more significant improvement in model performance
when using both DSConv and EHA. On the Call dataset, the
performance improvement of DSConv is not significant, but

Table 3
Results of model performance comparison (Call).

Dataset approach RMSE MAE

Call

HA 37.8628 21.6432
ARIMA 32.2148 19.0067
RNN 25.0098 15.6689
LSTM 21.6203 11.2540
STDenseNet 15.1990 10.6756
HSTNet 14.0011 9.7205

Ours 12.7006 8.5299

Table 4
Results of model performance comparison (Internet).

Dataset approach RMSE MAE

Internet

HA 378.7994 267.1134
ARIMA 236.2517 187.2671
RNN 210.3321 141.0089
LSTM 197.6521 132.1242
STDenseNet 184.2934 125.4735
HSTNet 156.0027 99.9223

Ours 147.2199 92.3762

Table 5
Performance comparisons (SMS).

model RMSE MAE

STDenseNet 24.9297 15.2868

+DSConv 24.1040 14.8707

+EHA 24.4815 15.1758

+DSConv+EHA 23.9793 14.7603

Table 6
Performance comparisons (Call).

model RMSE MAE

STDenseNet 15.1990 10.6756

+DSConv 15.0626 10.6217

+EHA 12.8598 8.7914

+DSConv+EHA 12.7006 8.5299

rather EHA brings a larger performance improvement. The
best model performance is achieved when both can be used.
On the Internet dataset, the improvement of EHA is more
obvious. Similarly, the model’s prediction is best when both
DSConv and EHA are used. The above experiments show
that efficient hybrid attention can effectively perform weight
enhancement for key features, thus improving the predictive
performance of the model. And depthwise separable con-
volution can also improve the performance of the model to
some extent.
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Figure 17: Comparison of prediction results for cells (10, 19).

Table 7
Performance comparisons (Internet).

model RMSE MAE

STDenseNet 184.2934 125.4735

+DSConv 170.9484 117.3138

+EHA 148.9835 93.9044

+DSConv+EHA 147.2199 92.3762

We also conduct a comparison experiment between the
prediction results of the proposed model and the baseline
model. We randomly select cell (10, 19) and cell (14, 8)
to conduct experiments on three datasets respectively. The
comparison of experimental results is shown in Figure 17
and Figure 18. Where (a), (b) and (c) show the prediction
results of the baseline model on three datasets and the
prediction curves are represented in green, while (d), (e)
and (f) show the prediction results of the model proposed
in this paper on three datasets and the prediction curves are
represented in red. It can be seen that the method proposed
in this paper is more consistent with the ground truth than
the baseline model in most cases. This shows that the model
can capture key features in 5G data well, so as to obtain good
prediction results.

5.4. Parameters and Computational Volume
Analysis

We analyze the parameters and computational quantities
of the model on three datasets, the results are shown in
Table 8, Table 9 and Table 10. The influence of different
modules on the lightweight of the model is analyzed in
detail. According to the table, when LC layer is used alone
to replace the original convolution layer, the model has
a significant reduction in the number of parameters and
calculation consumption compared with the basic model. It
can be seen that the lightweight convolution layer can greatly
improve the lightweight property of the model, thereby
reducing the prediction cost. When we add the EHA layer
alone, the parameters and computational costs of the model
increase only slightly compared to the baseline model, with
some lightweight optimization of our attention. Combined
with the previous ablation experiments, we believe that it is
worthwhile to sacrifice a small amount of lightweight prop-
erties in exchange for the improved predictive performance
of the model. Moreover, our model still has a huge advantage
over the baseline model in terms of lightweight. It can be
seen that the model proposed in this paper can effectively
save computational resources.

6. Conclusion
This paper focuses on network traffic prediction based on

deep learning methods for 5G. A lightweight hybrid atten-
tion deep learning model is proposed for the prediction per-
formance of the model and the lightweight of the model. In
this paper, we use hybrid attention that integrates the channel
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Figure 18: Comparison of prediction results for cells (14, 8).

Table 8
Comparison of Computing Resource Consumption (SMS).

model Parameters FLOPs

STDenseNet 0.29 M 1899.11 M

+LC 0.12 M 774.76 M

+EHA 0.30 M 1922.90 M

Ours 0.13 M 798.55 M

Table 9
Comparison of Computing Resource Consumption (Call).

model Parameters FLOPs

STDenseNet 1.90 M 12215.91 M

+LC 0.61 M 3974.76 M

+EHA 1.93 M 12265.74 M

Ours 0.65 M 4024.59 M

attention mechanism with the spatial attention mechanism
as a way to enhance the feature learning capability of the
model. Lightweight operations such as depthwise separable
convolution are also used to further reduce the prediction
cost of the model. The experimental results show that on
three real network traffic prediction datasets, the lightweight
hybrid attention deep learning model proposed in this pa-
per has more accurate prediction performance as well as
lower prediction cost compared to existing methods. This is

Table 10
Comparison of Computing Resource Consumption (Internet).

model Parameters FLOPs

STDenseNet 0.50 M 3228.06 M

+LC 0.18 M 1204.63 M

+EHA 0.51 M 3257.03 M

Ours 0.20 M 1233.61 M

sufficient to demonstrate the value of the prediction model
proposed in this paper in 5G network traffic prediction.
Relying on the model’s accurate network traffic prediction
ability to rationalize the allocation of resources, thus solving
the communication efficiency and resource consumption
problems in the field of integrated sensing, communication
and computation (ISCC) to a certain extent.

Our work still needs continuous improvement, and the
model’s prediction ability is lacking when dealing with
sudden 5G network traffic data. In subsequent work, while
improving the performance of the model itself, more charac-
teristics of the network traffic data and the factors affecting
the prediction can be incorporated. Alternatively, the model
can be targeted to optimize a certain aspect of the model,
thus making it easier to meet the needs of specific scenarios.
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