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Abstract—Platoon-based connected vehicles have recently re-
ceived increasing attention from academia and industry since
they are considered promising solutions to transform our mobility
society into the next generation. Vehicular communication and
platoon coordination are two aspects of enabling technologies
for mobile edge computing (MEC)-enabled cooperative vehicle-
infrastructure systems (CVIS), while few efforts have incorporat-
ed these two dimensions into a joint implementation framework.
In this paper, we investigate the problem of joint car-following
coordination and data transmission scheduling of vehicle pla-
toons. We develop a two-tier hierarchical framework for vehicle
platooning: a fuel-efficient mobility optimization layer for car-
following coordination and a reliable vehicle-to-infrastructure
(V2I) communication layer for data transmission scheduling.
Specifically, we present a platoon-based fuel consumption min-
imization model and a car-following control protocol to derive
fuel-efficient control inputs. We also propose a reliability-oriented
and delay-constrained data transmission scheduling model that
is driven by upper-layer car-following coordination. We de-
rived a closed-form expression for the reliability-optimal data
transmission scheduling solution, which incorporates platoon
mobility, channel characteristics, and application requirements.
With simulations, we show that our joint method improves fuel
efficiency and communication reliability for platooning vehicles.
In particular, the proposed method reduces the platoon’s fuel
consumption per time slot by 16.4%, meanwhile making the com-
munication reliability 1.31 times higher than other traditional
methods.

Index Terms—Connected vehicles, vehicle platooning, fuel
efficiency, communication reliability.
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I. INTRODUCTION

PLATOON-based connected vehicles, known as au-
tonomous vehicle platooning, are promising for the nex-

t generation of Cooperative Vehicle-Infrastructure Systems
(CVIS) [1], [2]. A vehicle platooning system aims to operate
a group of connected vehicles in a closely-spaced platoon
such that they can reduce aerodynamic drag and improve the
usage of road infrastructure. In this way, vehicle platooning
can potentially boost road traffic efficiency and safety, thus
attracting considerable attention in recent years [3]–[6]. From
a control perspective, a fundamental issue of vehicle platoon-
ing is to guarantee motion safety, smoothness, and stability,
meanwhile reducing energy consumption as much as possible.
Thus, increasing research efforts have been made on fuel-
efficient control of vehicle platoons. Different motion planning
and control solutions have been developed in the context of
control theory [7]–[10]. On the other side, the automation
and connectivity of vehicle platoons heavily rely on vehicular
communication and networking. In particular, current and en-
visioned intelligent vehicles are equipped with various sensors,
such as motion sensors, high-resolution cameras, lidar, and
onboard radar. They can generate hundreds of megabytes and
terabytes of onboard data. Besides, the connectivity of vehicles
promotes the integration of many mobile Internet applications
and services with the vehicular system, such as software
upgrading over-the-air (OTA), gaming, multimedia streaming,
and other infotainment services. These onboard applications
and services pose new challenges to vehicular communication,
storage, and computing. Hence, tackling such explosively
growing data and applications on the wheels becomes an
important issue.

With the thriving of mobile edge computing (MEC) tech-
nologies, connected vehicles are provided the opportunity to
access rich computing and storage resources in much closer
proximity [11]–[13]. That is, vehicles can offload computation-
intensive tasks and process their data-massive applications
by leveraging the computing resource deployed nearer the
vehicular user edge (such as cloudlet servers distributed along
the roadside) rather than by a remote cloud center. At this
point, the MEC paradigm, enabling connected vehicles to
spin up nearby computing and storage resources on demand,
offers significant benefits, including low-latency cloud services
and backhaul cost saving [14]. In the foreseeable future,
leveraging MEC, vehicle platoons will be able to achieve
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real-time updates of end-to-end autonomous driving models
between the vehicle and the cloud [15]–[17]. Nevertheless, the
application of MEC to connected vehicles generally encoun-
ters some fundamental challenges arising from wireless access
in vehicular environments (WAVE), such as high vehicle
mobility, non-line-of-sight (NLoS) signal propagation, and so
on. These factors can introduce significant latencies and reduce
the reliability of data transmissions. Therefore, proper data
transmission scheduling is crucial to mitigate the effects of
signal degradation and ensure consistent service quality. One
of the most challenging issues is guaranteeing the integrity
of delay-constrained data transmissions over highly-dynamic
and unreliable communication links. In general scenarios, fast-
moving vehicles lead to probabilistic packet loss, data bit
errors, and harsh wireless channels. A MEC server may fail
in fully presenting a computing task or an application when
it only receives fragments or partial data content. Therefore,
MEC-enabled connected vehicles should be intelligent enough
to adapt to high mobility, delay constraints, and transmission
integrity requirements of onboard applications. It is worth
noting that the primary focus of this study is the perfor-
mance of vehicles’ fuel consumption and V2I communication.
Therefore, in our research, MEC is utilized as an enabling
technology to achieve these objectives. We did not consider
the computational energy consumption of MEC itself, nor did
we address the aspect of vehicle platoons switching between
different MECs as they move, as these topics are not within
the scope of this study.

Moreover, different from vehicle-to-vehicle (V2V) com-
munication, with which platooning vehicles exchange small-
size data (e.g., beacon messages) in a broadcast manner,
vehicle-to-infrastructure (V2I) communication is employed for
transmitting large-scale data between vehicles and roadside in-
frastructure. In V2I communication, addressing the challenges
of extra delays caused by unreliable data transmission is vital
for maintaining the quality of data transmission. The potential
of MEC deployed at the roadside infrastructure depends on
V2I communication performance, which is inherently coupled
with platoon mobility [18]. Namely, V2I communication can
provide a vehicle platooning system edge computing power.
From this, the platoon benefits from processing sophisticat-
ed control tasks and infotainment applications, thus being
propelled into a software-upgradeable platform. The mobility
pattern of platooning vehicles determines the time-varying
characteristics of V2I communication links, which dramati-
cally influences MEC-oriented computation offloading.

Even though there already exist a wide range of studies
focusing on computation offloading and resource management
solutions for Internet of Things (IoT) or vehicular commu-
nications such as [19]–[21], limited research efforts have
been made on the joint design and optimization of mobility
and data transmission scheduling for platoon-based connected
vehicles. A large amount of literature has also been published
regarding either robust vehicle platoon control in the presence
of uncertainties or integration of inter-vehicle communication
(e.g., V2V broadcast) protocol and platoon controller [22]–
[24], while few works have incorporated fuel-efficient vehicle
platoon control with reliability-oriented V2I communication to

achieve a co-design paradigm. To realize MEC-enabled vehicle
platooning systems, reliable data transmission scheduling over
V2I communication links is critical. Ideally, the data transmis-
sion scheduling solution should be dynamically adaptive to the
behavior of platooning vehicles and channel conditions. Vehic-
ular data transmission scheduling must also satisfy upstream
applications’ integrity and delay constraints. In this regard,
we focus on developing a joint design methodology that can
coordinate the motion of platooning vehicles to reach a fuel-
efficient state and simultaneously schedule the data transmis-
sions of each platooning vehicle to guarantee communication
reliability under integrity and delay constraints.

A. Literature Review

Predictable reliability of vehicular connectivity is the key
to promoting the architecture transformation from single-
vehicle-oriented control to network-level control with safety
and efficiency. Thus, many recent studies focus on improving
vehicular communication and networking. For example, [25]
proposes a Cyber-Physical Scheduling (CPS) framework to
guarantee the reliability of inter-vehicle communication. As
a new application scenario in 5G, Ultra-Reliable and Low-
Latency Communication (URLLC) promotes considerable re-
search interest [26]. Different power control and resource
allocation schemes have been proposed for the URLLC re-
alization, such as [27]–[30]. [31] proposes a framework for
co-designing prediction and communication, showing that
the tradeoff between user-experienced delay and reliability
can be enhanced significantly with predictive communication
scheduling. [32] investigates the influence of V2I communica-
tion reliability on traffic control performance under signalized
intersection scenarios. [33] proposes a resource allocation
strategy for vehicular communication systems with low latency
and high reliability. To enable more reliable data retrieval
and lower communication latency, [34] proposes a Mobility
Prediction Retrieval (MPR) protocol, which can efficiently
retrieve the output of offloaded applications. Differently, some
other researchers study the energy efficiency problem of
mobile networks. In [35], the authors propose an optimal
pricing scheme based on a gradient descent method to achieve
energy-efficient MEC. In [36], the authors design an energy-
saving collaborative computing algorithm based on Lyapunov
optimization. Moreover, [37], [38] discuss V2V communica-
tion reliability and cloud computing under mobile scenarios.
However, the above works do not aim to co-design platoon-
oriented control and communication.

In platooning scenarios, [39] proposes a connectivity-status-
dependent feedback controller to solve the control problem of
a leader-following (LF) vehicle platoon under different com-
munication ranges. [40] shows how a distributed consensus-
based longitudinal controller can simultaneously guarantee the
stability and performance of a regime platoon. [41], [42]
design resource allocation algorithms, and [43] presents a
data-sharing strategy to improve the data transmission per-
formance of vehicle platoons. [44] establishes a resource
allocation scheme that can maximize the utility of vehicles
surrounding a platoon using a contract-optimization approach.
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For minimizing fuel consumption, [45] proposes a periodical
switching control method. In [20], the authors propose a
resource allocation strategy based on a service pricing strategy.
[46] designs Radio Environment Maps (REMs) to support
selecting a secondary spectrum channel for a vehicle platoon,
which can guarantee communication reliability. Unlike the
previous works, [47] presents novel platooning strategies, in-
cluding front, middle, and tail merge operations, and analyzes
the efficiency of these operations under different mobility
scenarios. Although the above works achieve stability and
efficiency in connected vehicle platooning, little attention has
been paid to integrating data transmission mechanisms into a
platoon coordination framework.

Many significant works aim to analyze the impact of the
communication topology on vehicle platoon performance. For
example, [48] develops a general framework based on graph
theory to analyze the influence of undirected and directed
communication topologies on platoon resilience under various
cyber attacks. In [49], the authors propose a discrete hybrid
stochastic control approach for vehicle platoons using non-
ideal communication topologies. Besides, tremendous studies
have also been achieved to develop novel robust platoon
control solutions to guarantee the stability and robustness of
vehicle platoons in the presence of various communication
disturbances. Representative works in this direction include
communication delay-aware min-max model predictive control
(MPC) [50], switching topology-aware MPC [51], and joint
sampled control regarding time-varying topology and channel
fading [52]. In [53], the authors consider random switching
topologies and design a stochastic stable platoon controller
based on H∞ robust control theory. In [54], the authors
propose a distributed adaptive consensus control approach to
deal with heterogeneous time-varying communication delays
and switching topologies of vehicle platoons. In [55], the
authors combine linear matrix inequality (LMI) transformation
and eigenvalue decomposition to design a robust platoon con-
troller under uncertain topologies. In our previous works [23],
[24], we have exploited robust counterpart optimization, super-
twisting sliding-mode controller, and observer techniques to
achieve robust vehicle platooning in the presence of uncertain
disturbances that result from both the control system and
the communication network. Advanced robust platoon con-
trol designs to tackle communication factors (e.g., stochastic
packet loss, limited transmission distance, and time-varying
delays) can also be found in many other high-quality papers
like [56], [57]. The above literature shows that great research
efforts have been made on robust control designs for vehicle
platoons regarding various communication impacts. Many
advanced schemes have been proposed from the perspective
of different robust control methodologies. Even though they
consider the impact of time-varying network topologies and
other communication factors (e.g., delay and packet loss), the
resulting control designs do not incorporate the requirement
of an upper-layer application, i.e., guaranteeing the integrity
of data to be offloaded over stochastic and fading channels.
Furthermore, most works mentioned above take time-varying
communication topologies as exogenous disturbances on their
vehicle platooning systems. However, they have yet to charac-

terize vehicular communication reliability that relies on time-
varying channel factors at the physical layer, vehicle mobility,
and application constraints.

On the other side, the co-design of communication and
control for connected and autonomous vehicles (CAVs) has
received increasing attention. As shown in [22], a consensus
control algorithm is successfully integrated with a vehicular
data dissemination protocol using adaptive candidate selection
mechanisms to achieve reliable vehicle platooning. In [58],
the authors propose a relay selection-based channel alloca-
tion scheme for LTE-vehicle-to-vehicle (LTE-V2V) commu-
nications and incorporate the communication design into a
distributed MPC control framework, guaranteeing the string
stability in vehicle platooning and the reliable information
dissemination within the platoon. In [59], the authors consider
integrating a channel allocation scheme into a predecessor
leader following-based platoon control strategy to minimize
tracking errors. A similar radio resource allocation approach is
also integrated into an MPC framework to control the spacing
of a vehicle platoon [60]. Dynamic event-triggered scheduling
mechanisms have also been developed for vehicle platooning,
in which bandwidth and vehicles’ motion states are jointly
considered [61], [62]. In [63], the authors propose an integrat-
ed external positivity design for a cooperative adaptive cruise
control (CACC) system. This design can guarantees graceful
degradation in terms of collision avoidance and disturbance
rejection when vehicles switch between adaptive cruise control
(ACC) and CACC due to communication quality issues. In
[64], the authors characterize wireless network reliability with
the end-to-end delay of vehicle platoons and then optimize
the control parameters of a CACC system based on the
optimal velocity model. Their essential goal is to improve
the reliability of the platoon-oriented wireless network. In
[65], the authors aim to guarantee vehicle-to-infrastructure
(V2I) quality-of-service (QoS) requirements. They develop a
reinforcement learning-based approach to jointly control trans-
mission power, beamforming, and vehicle spacing for platoon-
based vehicular cyber-physical systems. Different from the
above works on the co-design of radio resource allocation
and platoon control, some other researchers are dedicated to
selecting a proper communication topology to guarantee the
controller performance of vehicle platoons [66]. It is witnessed
from the above studies that a number of radio resource-aware
or topology-aware platoon control approaches can successfully
realize reliable and resource-efficient vehicle platooning. Their
communication and control co-designs consider physical-layer
communication factors in different control frameworks, e.g.,
MPC and consensus control frameworks. Nevertheless, the
above co-designs do not aim to address the co-design problem
of fuel-efficient platoon control and integrity-guaranteed data
transmission scheduling. In particular, the proposed communi-
cation strategies in the above works either aim to allocate radio
resources (e.g., transmit power, beamforming and channels)
[58]–[60], [65], reduce data transmission packets in harsh
fading channels [61], [62], [64], or adapt the communication
topology by dynamic relay selection [22], [66]. But they have
not incorporated the transmission demand of the upper-layer
application into their communication and control co-design
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solutions. In general, an upper-layer application of a CAV
in a MEC-assisted scenario requires its data bits to be fully
offloaded to an edge node by a limited deadline in order to
perform remote processing at the edge node. The integrity of
computation offloading should be met, while it is unexplored
how to characterize the reliability of communication links from
a probabilistic perspective in the current literature, i.e., the
possibility that vehicular communication links can successfully
transmit the application data with a certain delay constraint
(i.e., within a given deadline). We differentiate our work from
those mentioned above by explicitly taking into account the
transmission integrity required by the vehicular computation
offloading application and addressing the challenge arising
from joint fuel-efficient platoon coordination and reliability-
aware data transmission scheduling under stochastic and fad-
ing channels and transmission integrity constraints.

Additionally, many researchers devote themselves to reduc-
ing the fuel consumption of platooning vehicles. For example,
[67] develops models capturing the impact of inter-vehicle
distance in a homogeneous vehicle platoon on the drag co-
efficient and proposes a fuel-saving platoon control approach.
[68] presents a fuel-aware routing framework for autonomous
vehicles, including multiple optimization objectives such as
fuel consumption, trip delay, and refueling cost. [69] proposes
a reinforcement learning approach to enhance the road traffic
safety and fuel economy of autonomous vehicles with the as-
sistance of V2I communication. Different fuel-efficient speed
planning and control protocols have been proposed for heavy-
duty truck platoons [9], [10]. However, developing a joint
implementation framework that enables the adaptive response
of vehicular data transmissions to fuel-efficient platoon control
remains an open and challenging issue.

B. Motivation and Contribution

With V2I communication, platooning vehicles can be tightly
integrated with MEC to process diverse computing tasks
and upstream applications with large-scale data. The recent
literature either focuses on various control-centric solutions to
coordinate the platooning vehicles or targets at communication
protocol designs from the perspective of transmission power
optimization and network resource allocation. Nevertheless,
it still needs to explore how reliable V2I communication of a
vehicle platoon can be improved by jointly taking into account
platoon coordination and data transmission scheduling, as this
issue is critical for the practical realization of CVIS.

In this paper, we would like to fill the aforementioned gap
and incorporate the perspectives of vehicle platooning and data
transmission scheduling. We develop a joint platoon coordina-
tion and data transmission scheduling framework. Specifically,
we theoretically characterize the V2I communication reliabil-
ity of a vehicle platoon regarding vehicle mobility, channel
characteristics, application integrity and delay requirements.
The main contributions of our work include:

i) We propose a two-tier hierarchical framework for MEC-
enabled vehicle platoons, including a fuel-efficient optimiza-
tion layer for platoon coordination and a reliable V2I commu-
nication layer for data transmission scheduling. Notably, the

Fig. 1. A typical MEC-enabled vehicle platooning system with the cooper-
ation of a resource-rich infrastructure and a platoon of moving vehicles.

data transmission scheduling of the platoon depends not only
on channel conditions and application requirements but also
on the temporal-spatial trajectory of the platoon.

ii) We propose a fuel-efficient optimization model and
present a car-following control protocol considering the well-
known leader-predecessor-follower information flow topology.
The control protocol is incorporated into the fuel-efficient
optimization model to realize car-following coordination be-
tween successive vehicles. It guarantees both stability and fuel
efficiency of vehicle platooning.

iii) We theoretically characterize the V2I communication
reliability of the platoon from a probabilistic perspective
regarding vehicle mobility, stochastic channel characteristics,
and integrity and delay constraints on data transmissions. We
propose a reliability optimization model and derive a closed-
form expression for the reliability-optimal scheduling solution.
Our solution enables vehicular data transmissions to adapt to
the coordinated mobility of the platoon.

The motivation and novelty of our work are further dis-
cussed in Appendix A in the online supplementary material
due to the space limitation. The rest of this paper is orga-
nized as follows. Section II presents platoon coordination and
V2I communication models. Section III proposes a two-tier
optimization framework for joint platoon coordination and
reliable vehicular communication. In Section IV, a closed-
form solution for mobility-driven data transmission scheduling
is derived. Section V provides simulation results to validate
the proposed framework and method. Finally, Section VI
concludes this study and remarks on our future work.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a platoon-based CVIS
with MEC capacity, where a group of connected vehicles is
moving as a closely-spaced platoon, and roadside infrastruc-
ture is an edge-computing provider. The platooning vehicles
can exchange control information via V2V communication
while offloading data-massive tasks or applications to the
edge for processing via V2I communication. We remark that
there already exist many optimization schemes and broadcast
protocols focusing on V2V communication and that the size of
inter-vehicle exchanged messages is usually much smaller than
the data load over V2I communication links in reality. Hence,
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this paper mainly focuses on optimizing V2I communication
reliability under the data-massive transmission integrity and
delay constraints. In the V2I communication-based MEC
paradigm, the data transmitted from platooning vehicles to the
roadside infrastructure can be the input of sensor data-driven
application programs. The roadside infrastructure equipped
with MEC is essential in processing large-size sensor data
and creating models and strategies fed back to the platooning
vehicles to enhance their comfort and safety.

We denote the set of platooning vehicles by N =
{0, 1, . . . , N}, where the leader is indexed by 0 and the other
following vehicles are indexed from 1 to N . The operation of
the system is considered to be slotted into a series of discrete
time intervals, each with a constant duration of ∆τ seconds.
To enable mathematically-tractable analysis, we exploit a
canonical model with two key parameters that characterize
the transmission delay constraint and the data load of an up-
stream application or a computing task to be offloaded from
a vehicle j ∈ N to the roadside infrastructure [70], [71]:

i) The maximum number of time slots for data transmis-
sions, Tj . That is, the application or task data of j must be
successfully transmitted to the edge by the required deadline
Tj∆τ , i.e., within the given Tj time slots. Tj∆τ is indeed
referred to as the allowed delay limit.

ii) The total data load of j, Qj . Vehicle j expects to fully
transmit the Qj-bit data to the edge, such that the computing
edge can intactly reconstruct the vehicular application or task.

The essential goal of reliable data transmission scheduling
over a V2I communication link is to determine a prop-
er number of data bits to be served in each time slot t,
qj(t) ∈ R≥0, such that the probability that the overall data
bits Qj are successfully transmitted by the delay limit Tj∆τ
is maximized. Let qj = [qj(1), qj(2), . . . , qj(Tj)]

T ∈ RTj×1

denote a scheduling solution for vehicle j. According to the
transmission integrity and delay requirements above, we have
the following feasible set for j’s data transmission scheduling

Qj =

qj ∈ RTj×1 :

Tj∑
t=1

qj(t) = Qj ,∀qj(t) ≥ 0

 . (1)

A. Platoon Mobility Formulation

In vehicle platooning control and connected vehicle com-
munication, the most commonly used dynamics models are the
double integrator model and the engine/powertrain dynamics
model. The discrete-time double integrator model is wide-
ly employed for designing high-level controllers for vehicle
platoons [6], [52], [53], [55], [56], [58], [72], [73]. While
the engine/powertrain dynamics, capturing lower-layer effects
like torque dynamics, actuator and communication delays,
and inertia effects, are explored in other works [53], [55],
[56], [74]. By comparing the advantages of the two modeling
approaches and considering the primary focus of this paper,
we chose the double integrator model to build the vehicle
dynamics model. Given the small time slot duration ∆τ ,
each vehicle’s kinematics can be approximated as constant

within a time interval. Thus, we adopt the discrete-time double
integrator model, which state-space form is as follows

xj(t+ 1) = Axj(t) +Baj(t), j ∈ N , (2)

where xj(t) ∈ R2×1 is a kinematic state of vehicle j at t,
and A ∈ R2×2 and B ∈ R2×1 are the coefficient matrices
of state xj(t) and control input aj(t), respectively. These
mathematical terms are defined as follows

xj(t) =

[
sj(t)
vj(t)

]
, A =

[
1 ∆τ
0 1

]
, B =

[
0.5 (∆τ)

2

∆τ

]
. (3)

where sj(t), vj(t), and aj(t) are the longitudinal position,
velocity, and acceleration of vehicle j at time t, respectively.
In (2), the acceleration, aj(t), is a key design parameter
that is generally considered as the control input of vehicle
j to coordinate the individual motion behavior. Besides, in
reality, the kinematic parameters of vehicles should be phys-
ically bounded. We denote the bounds on vj(t) and aj(t) as
V = [vmin, vmax] and A = [amin, amax], where vmin and vmax

are the minimal and maximal allowed velocities, and amin and
amax are the minimal and maximal allowed accelerations. We
have vj(t) ∈ V and aj(t) ∈ A for all j and t.

To ensure smooth motion and stability, each following
vehicle j ∈ N/{0} should adaptively respond to its preceding
vehicle j−1 ∈ N . In this regard, the control input of vehicle j
becomes a function of the kinematic parameters of its preced-
ing vehicle. Thus, we propose a car-following control protocol
for each j based on linear state feedback. Recently, the Con-
stant Time Headway (CTH) policy is widely adopted in the ve-
hicle platooning literature [22], [54], [56], [57], [61], [64]. The
form of CTH can be expressed as dj,j−1(t) = τvj(t) + lj−1,
where τ denotes the desired time headway of the platooning
vehicles and lj−1 is the desired constant inter-vehicle distance
between vehicles j and j − 1 that is independent of the
vehicle velocity. Inspired by the relationship between vehicle
accidents and speed differentials [75], we exploit a variant of
the CTH policy to design the control protocol. To be specific,
let dj,j−1(t) = τ(vj(t) − vj−1(t)) + lj−1 be the desired
inter-vehicle distance between vehicles j and j − 1 at t for
j ∈ N \ {0}. Based on the aforementioned information, we
propose a leader-predecessor-follower (LPF) control protocol,
incorporating a variant of the CTH policy

aj(t) = −βT
j (xj(t)− xj−1(t))− βT

j (xj(t)− x0(t))− λj ,
(4)

where βj = [α1,j , α1,jτ + α2,j ]
T for j ∈ N \ {0}, λj =

α1,j

(
lj−1 +

∑j
i=1 li−1

)
for j ∈ N \ {0}, α1,j and α2,j are

tunable parameters according to the car following behavior in
the platoon. As seen in (4), each vehicle (except the platoon
leader) generates its control input using state feedback from
the preceding vehicle and the leader. By combining (4) and
(2), we establish a car-following-based platoon control system,
where each vehicle’s kinematics depend on its predecessor
and the leader’s behavior. Thus, the overall platoon mobility
hinges on the leader’s control input. Due to the LPF infor-
mation topology, each following vehicle detects the inter-
vehicle distance and velocity relative to its predecessor via



6

onboard sensors (e.g., radar) and receives position and velocity
information from the leader via vehicular communications.

According to [6], the control gains α1,j and α2,j in (4),
for j ∈ N\{0}, should be positive to ensure the stability of
the platoon system. This stability means all vehicles reach
consensus on the desired inter-vehicle spacing and velocity.
Additionally, string stability is crucial to prevent disturbances
in position or velocity from amplifying downstream. Various
studies have examined theoretical criteria for string stability
from frequency-domain and time-domain perspectives [22],
[51], [56], [57], [64]. According to the L2 string stability
definition in [76], the control gains α1, j and α2,j in the LPF
protocol with the CTH policy (4) can be chosen to satisfy the
following condition to ensure string stability

sup
∆der,j−1(t) 6=0

‖∆der,j(t)‖L2

‖∆der,j−1(t)‖L2

≤ 1, ∀t, (5)

where ∆der,j(t) is defined as the discrete-time spacing error
between vehicles j and j − 1 at time t, i.e., ∆der,j(t) =
sj−1(t) − sj(t) − lveh,j−1 − dj,j−1(t) for j ∈ N\{0}. Here,
lveh,j−1 denotes the body length of vehicle j−1. The L2-norm
of the spacing error ∆der,j−1(t) is given as ‖∆der,j(t)‖L2

=(∑Tj
t=1 |∆der,j(t)|2

) 1
2

for j ∈ N\{0}. Let Z{·} denote the
Z-transformation operator and ∆der,j(z) = Z {∆der,j(t)} for
all j where z is the Z-transformation variable. Accordingly,
we denote the transfer function between two spacing errors
∆der,j(z) and ∆der,j−1(z) by Γj(z). Due to the linearity of
the mobility model (2) and the control protocol (4), we have
∆der,j(z) = Γj(z)∆der,j−1(z) for j ∈ N\{0}. According
to [77], [78], the H∞-norm of the transfer function can be
derived from (5) as follows

‖Γj(z)‖H∞ = sup
∆der,j−1(z)6=0

‖Γj(z)∆der,j−1(z)‖L2

‖∆der,j−1(z)‖L2

≤ 1, (6)

for j ∈ N\{0}. (6) provides the sufficient condition to
guarantee the L2 string stability. In practice, the transfer
function Γj(z) for all j can be constructed by using the
system identification technique based on measured data (i.e.,
frequency-domain data) or the theoretical approximation. As
shown in [77], [78],

∥∥Γj(e
iω)
∥∥
H∞

provides a tight upper
bound of the L2-norm in (5) for j ∈ N\{0}. Thus, we can
configure the gain parameters of the car-following control
protocol offline to guarantee

∥∥Γj(e
iω)
∥∥
H∞

≤ 1 for any
angular frequency ω ∈ [−π, π] where i denotes the unit
imaginary number. Once the gain parameters are configured,
they can be applied to compute the string stability-guaranteed
control actions online by the platooning vehicles.1

1From the optimal control perspective, the control gains can also be treated
as a kind of decision variable and then integrated into the optimization
procedure. However, the gain-integrated optimization will increase the model
complexity and may make computing control signals intractable since the
constraints on the L2 string stability and the transfer function involving the
control gains should be addressed at the same time. The optimal design of
the control gains is really out of the scope of our current work, which is
left as our future work. Besides, a more comprehensive survey of analysis
methodologies for platoon string stability can be found in [76].

B. Vehicle Fuel Consumption Formulation

By forming a platoon, vehicles can travel with a smaller
space headway, thus reducing aerodynamic drag over the front
surface of each follower. Regarding the fuel efficiency of
platooning vehicles, we adopt a velocity-dependent function
to approximate the fuel consumption of vehicle j as in [79]

Fj(t) = βj3v
2
j (t) + βj2vj(t) + βj1 +

βj0
vj(t)

, j ∈ N , (7)

where βj3, βj2, βj1, βj0 are vehicle-specific parameters. To be
specific, βj3v2

j (t) is the fuel consumption associated with air
resistance, βj2vj(t) captures the engine-related fuel consump-
tion, βj1 provides the fuel consumption due to acceleration,
upgrade and friction, and βj0

vj(t)
describes fuel consumption for

accessory purpose such as air conditioning. According to [79],
the fuel consumption model (7) is sufficiently reasonable to
fit power-based and regression-based statistical models like
comprehensive modal emission model [80], MOVES [81], and
VT-Micro model [82]. Therefore, it is employed here for the
fuel-efficient optimization of the vehicle platoon.

While vehicles can improve driving range through braking
energy recovery, our study does not account for this, as we
primary focus on fuel consumption in internal combustion
engine vehicles. The second reason is that it is common
in fuel consumption studies not to emphasize braking en-
ergy recovery [83]–[85]. Additionally, we do not consider
the aerodynamic effects on the leading vehicle caused by
following vehicles in a platoon, as research shows this only
significantly impacts fuel consumption when the vehicles are
very close [86].

C. V2I Communication Model

The distance between the vehicle and the communication
infrastructure is an important factor in the V2I communication
model. This means that the quality of V2I communication is
inherently coupled with the mobility of the vehicle platoon.
To establish the distance model between the vehicle and
the roadside infrastructure, we use the longitudinal position
commonly employed in vehicle platooning studies (e.g., [63],
[76]) to represent the longitudinal positions of the entities in
our research scenario. We denote the longitudinal positions of
the roadside infrastructure and vehicle j by sI and sj(t), re-
spectively. Meanwhile, we define the vertical relative distance
from the infrastructure to the road centerline by ∆L. The time-
varying distance between each vehicle j and the infrastructure,
determined by the temporal-spatial trajectory of the vehicle,
can be formulated as

Lj(t) =
√

(sI − sj(t))2 + (∆L)2, j ∈ N . (8)

where Lj(t) denotes the Euclidean distance between the
vehicle j and the infrastructure at time slot t.

To model the V2I communication capacity, we consider the
Single-Carrier Frequency Division Multiplexing Access (SC-
FDMA) protocol for vehicular channel access according to the
standard specification for Long Term Evolution-based Vehicle-
to-Everything (LTE-V2X) networks and let θj(t) denote the
amount of data bits that can be transmitted by vehicle j in
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time slot t, j ∈ N . In general, θj(t) depends on the bandwidth
allocated to the platooning vehicles, their transmission power,
and the quality of the time-varying communication channel.
Furthermore, we refer to Shannon’s channel capacity formula
to calculate θj(t) as follows

θj(t) =
B

M +N + 1
log2

(
1 + ωjg

2(Lj(t))
)
, (9)

where B is the available bandwidth, and M is the number
of other accessing users (excluding N + 1 platooning vehi-
cles) contending the same channel simultaneously. ωj = PT

N0

represents the normalized power of vehicle j, where PT is
the transmission power and N0 is the average noise power.
g(Lj(t)) denotes the distance-dependent channel gain, which
is inherently coupled with the vehicle mobility.2

Consider that heavily built-up urban environments can sig-
nificantly affect vehicular signal propagation along V2I links.
There are many obstacles in such environments, such as high-
rise buildings, trees, and heavy-duty trucks, that frequently
scatter the radio signal between the platooning vehicles and
the infrastructure, resulting in no-line-of-sight (NLoS) propa-
gation. Thus, Rayleigh fading is viewed as a most reasonable
model for NLoS signal propagation [87]. According to [11],
[88], [89], we consider that cellular V2I channels follow the
well-known Rayleigh fading, such that g2(Lj(t)) follows an
exponential distribution with the distance-dependent parameter
(Lj(t))

γ where γ is the path-loss exponent, i.e., g2(Lj(t)) ∼
exp ((Lj(t))

γ). From the probabilistic perspective, vehicle j,
j ∈ N , is able to successfully offload the application data of
qj(t) bits only when the channel capacity in time slot t should
not be less than the required data load, i.e., θj(t)∆τ ≥ qj(t).
Therefore, we let the probability of successfully transmitting
qj(t)-bit data in time slot t be pj(qj(t)) = Pr

{
θj(t) ≥ qj(t)

∆τ

}
,

j ∈ N . By substituting (9) into the definition and following
the exponential distribution on (Lj(t))

γ , we can derive the
success probability as follows3

pj(qj(t)) = Pr

{
θj(t) ≥

qj(t)

∆τ

}
= exp

(
−2

(M+N+1)qj(t)

B∆τ − 1

ωj
Lγj (t)

)

= exp

Lγj (t)

ωj
−
Lγj (t)2

(M+N+1)qj(t)

B∆τ

ωj

 , j ∈ N .

(10)

2The channel capacity formula (9) or its variant is widely adopted in
the field of wireless communications, and networking [11]. Basically, it
results from Shannon’s information theory. It characterizes the physical-layer
relationship between the available bandwidth, the channel access number, the
transmission power, and the quality of the stochastically fading channel.

3The fading channel model captures physical-layer characteristics, which
inherently determine upper-layer performance metrics like packet loss rate and
delay. Studies like [90] show that a Rayleigh fading channel can be mapped
to an ON-OFF channel to model Bernoulli packet loss distribution. When the
channel capacity θj(t)∆τ meets or exceeds the transmission load qj(t), the
channel is ON, and packets are received successfully. Otherwise, the channel
is OFF, leading to packet loss. Additionally, a Poisson distribution, statistically
related to Bernoulli, describes the discrete probability of packet loss in the
fading channel, thus enabling the fading channel model to underpin upper-
layer packet loss analysis and derive packet-oriented performance metrics.
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Fig. 2. The two-tier hierarchical framework for joint platoon coordination and
data transmission scheduling. The platoon leader sends its real-time position
and velocity to all the followers via V2V communications; meanwhile, the
followers can share their real-time position and velocity with their leader.
Besides, each follower detects the position and velocity of its predecessor
by the onboard sensors. Due to the distributed nature of the car-following
control protocol, the following vehicles can calculate their control actions
locally using their sensing information in a distributed manner. The platooning
vehicles also schedule their application data transmitted to the edge cloud
using the closed-form scheduling solution based on their mobility information.

Based on (10), we further calculate the overall probabil-
ity of success in transmitting all the scheduled data bits
qj = col {qj(1), qj(2), . . . , qj(Tj)} for each vehicle j by the
principle of probability multiplication as follows

φj(qj) =

Tj∏
t=1

pj(qj(t)) =

exp

 Tj∑
t=1

Lγj (t)

ωj
−
Lγj (t)2

(M+N+1)qj(t)

B∆τ

ωj

 , j ∈ N .

(11)
In (11), φj(qj) is referred to as the V2I communication relia-
bility of an individual vehicle. It characterizes the possibility
from a probabilistic perspective that vehicle j is able to
transmit all the Qj-bit data to the roadside infrastructure by a
required deadline Tj∆τ successfully.

Regarding all the platooning vehicles, the overall V2I com-
munication reliability of the platoon is formulated as

φplatoon(q) =

N∏
j=0

φj(qj) =

exp

 N∑
j=0

Tj∑
t=1

Lγj (t)

ωj
−
Lγj (t)2

(M+N+1)qj(t)

B∆τ

ωj

 ,

(12)

where q = col{qj , j ∈ N}. When carefully looking into (12),
it is seen that the platoon-oriented V2I communication reli-
ability, φplatoon(q), is inherently coupled with the temporal-
spatial trajectories of the platooning vehicles via the time-
varying distance measures {Lj(t), j ∈ N}. Thus, a basic
optimization problem is how to maximize the communication
reliability meanwhile minimizing the resource consumption
by jointly controlling platoon mobility and scheduling data
transmissions. We address this issue in the following section.

III. TWO-TIER OPTIMIZATION MODEL

To enable the adaptive response of V2I communication
to the platoon mobility, we propose a two-tier hierarchical
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framework for the co-design of fuel-efficient platoon coor-
dination and data transmission scheduling as shown in Fig.
2. In the upper layer, a car-following mobility optimization
is realized to obtain the fuel-efficient control inputs for each
platooning vehicle. The platoon leader solves the fuel effi-
ciency optimization model to get a fuel-efficient acceleration
control to adjust its mobility; meanwhile, the other vehicles
adapt their mobility by following their proceeder in a car-
following manner. The upper layer can provide the temporal-
spatial kinematic information to the lower layer. In the lower
layer, a V2I communication reliability optimization is solved
by each vehicle locally to obtain a data transmission schedul-
ing solution. Each vehicle can schedule its computation data
offloaded to the edge cloud using a closed-form scheduling
solution based on coordinated platoon mobility. Computation
offloading enabled by reliable data transmission scheduling
can implicitly preserve local computing resources for vehicular
task execution and thus benefit mobility optimization and
platoon control in the upper layer. The models operated in
these two layers are detailed in the following subsections.

A. Fuel-Efficient Car-Following Mobility Optimization

The following vehicles in the platoon use the control proto-
col (4) to coordinate their mobility in a car-following manner,
in which the control input of each follower depends on the
kinematics of its preceding vehicle and the leader. Hence, the
overall platoon mobility is determined by the leader and we
can optimize the platoon mobility by controlling the leader.
Let T be T = max{Tj , j ∈ N}, i.e., the allowed maximum
slot number among the platooning vehicles. The collection
of the leader’s control inputs over T time slots is defined
by a0 = col{a0(t), t = 1, 2, . . . , T}. sj(0) and vj(0) are
the given initial position and velocity for vehicle j ∈ N ,
respectively. Combining (2), (4) and (7), we formulate a fuel-
efficient optimization model as follows

a∗0 ∈ arg min
a0

:

N∑
j=0

T∑
t=1

Fj(t)

s.t.


aj(t) ∈ A,∀j, t;
vj(t) ∈ V,∀j, t;
sj−1(t)− sj(t) ≥ dj,j−1(t),∀j, t;
(2), (4).

(13)

In (13), the first two constraints bound the acceleration and
velocity of the vehicles, respectively. The third constraint guar-
antees rear-end collision avoidance in the platoon. By solving
(13), we can obtain the optimal control input of the leader in
terms of the fuel efficiency of the whole platoon, a∗0. Using the
car-following protocol (4), we can also obtain the optimal con-
trol inputs of all the following vehicles j = 1, 2, . . . , N during
the individual time slots, a∗j = col{a∗j (t), t = 1, 2, . . . , Tj}.
The optimal velocity and trajectory of each vehicle j ∈ N ,
v∗j = col{v∗j (t), t = 1, 2, . . . , Tj} and s∗j = col{s∗j (t), t =
1, 2, . . . , Tj}, are determined by using the mobility model (2)
as long as a∗j is given. For notation simplicity, we denote the
set of the optimal fuel-efficient trajectories of the platooning
vehicles by s∗ = col{s∗j , j ∈ N}. It is recognized that

(13) is a classical MPC problem with linear constraints. In
general, this problem can be effectively solved by using the
well-known numerical optimization method, the interior-point
method, that is available in various high-performance large-
scale optimization solvers like CPLEX, Gurobi, MOSEK, and
IPOPT. The computational complexity in solving (13) with the
interior-point method is polynomial-time, i.e., in the order of
O
(
T 3.5

)
, which relies on the number of decision variables,

i.e., the size of the leader’s control signal a0.

B. Data Transmission Scheduling Optimization

Let the conditional V2I communication reliability of the
platoon depending on the optimal trajectories of the vehicles
be φplatoon(q; s∗), i.e.,

φplatoon(q; s∗) =

exp


N∑
j=0

Tj∑
t=1


(L∗j (t))

γ

ωj

−
(L∗j (t))

γ2
(M+N+1)qj(t)

B∆τ

ωj


 ,

(14)

where L∗j (t) =
√

(sI − s∗j (t))2 + (∆L)2, and s∗j (t) for t =

1, 2, . . . , Tj and j ∈ N is obtained from (13).
Now, based on (14), we propose a V2I communication reli-

ability optimization model to obtain reliable data transmission
scheduling solutions for the platooning vehicles as follows

q∗ (s∗) ∈ arg max
q

: φplatoon(q; s∗)

s.t. qj ∈ Qj , j ∈ N .
(15)

It is remarked from (15) that the vehicular data transmis-
sion scheduling is driven by the platoon mobility. Once an
optimal scheduling solution q∗ (s∗) is obtained, depending
on the specific platoon mobility s∗, the platooning vehicles
can offload their massive data to the computing edge (i.e.,
the roadside infrastructure) for remote processing, such that
more onboard computing power is saved and allocated to
locally execute other tasks and applications like the real-
time car-following coordination based on the obtained control
inputs {a∗j (t),∀j, t}. Therefore, in such an implicit closed-loop
paradigm, the performance of the platoon system is improved
in terms of control and communication.

IV. ANALYTICAL SCHEDULING SOLUTION

To facilitate the implementation of data transmission
scheduling, we further derive a special analytical solution
based on (15). In the following analysis, we treat q∗ as q∗(s∗)
and also φplatoon(q) as φplatoon(q; s∗) for notation simplicity.
Given s∗ and L∗j (t) for all j and t, solving an optimal q∗ from
(15) boils down to solving the minimization problem

min
q

: U(q) =

N∑
j=0

Tj∑
t=1

(
L∗j (t)

)γ
2

(M+N+1)qj(t)

B∆τ

ωj

s.t. qj ∈ Qj , j ∈ N .

(16)

The proof of its convexity can be found in Appendix B.
Now, from (16) we have the following lemma.
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Lemma 1: For two different time slots, t′ 6= t′′, it holds that(
L∗j (t

′)
)γ

2βq
∗
j (t′) =

(
L∗j (t

′′)
)γ

2βq
∗
j (t′′) (17)

for j ∈ N , where β is defined as β = (M+N+1)
B∆τ for simplicity,

and q∗j (t′), q∗j (t′′) are two positive optimal data partitions, i.e.,
q∗j (t′) > 0 and q∗j (t′′) > 0.

Proof: According to the first-order optimality theory, we
formulate the Lagrangian function of (16) as follows

L(q,λ, δ) =U(q)−
N∑
j=0

Tj∑
t=1

λj(t)qj(t)

−
N∑
j=0

δj

 Tj∑
t=1

qj(t)−Qj

 ,

(18)

where λ is the collection of the nonnegative Lagrangian
multipliers associated with the lower-bound constraints in (16),
λ = col{λj(t) ∈ R≥0,∀j, t}, and δ is the collection of the
Lagrangian multipliers associated with the equality constraints
in (16), δ = col{δj ∈ R,∀j}. Hence, the Karush-Kuhn-Tucker
(KKT) conditions that an optimal data transmission scheduling
solution must satisfy are given by

∂U(q)
∂qj(t)

∣∣∣
qj(t)=q∗j (t)

− δj − λj(t) = 0,∀j, t;

λj(t)q
∗
j (t) = 0,∀j, t;

λj(t) ≥ 0,∀j, t;
q∗ ∈ Qj ,∀j.

(19)

In (19), the first item is the gradient condition, the second
indicates the complementary slackness, and the third denotes
the nonnegative constraint on the Lagrangian multipliers as-
sociated with the inequalities. The last item represents the
feasibility of the optimal solution.

According to the complementary slackness, when two dif-
ferent data partitions of j ∈ N are positive, e.g., q∗j (t′) > 0
and q∗j (t′′) > 0, it must hold that λj(t′) = λj(t

′′) = 0. In this
situation, from the gradient condition in (19), we further get

δj =
∂U(q)

∂qj(t′)

∣∣∣∣
qj(t′)=q∗j (t′)

=
∂U(q)

∂qj(t′′)

∣∣∣∣
qj(t′′)=q∗j (t′′)

, (20)

which immediately results in (17).
Lemma 1 mathematically characterizes the fact that each

vehicle j ∈ N should increase the number of data bits
per time slot to be transmitted, qj(t), when the relative
transmission distance, Lj(t), decreases. On the contrary, the
platooning vehicles need to reduce the number of data bits
served in a time slot to guarantee the probability of success
in data transmissions, when they moves far away from the
infrastructure. Using Lemma 1, we obtain the results:

Theorem 1: Suppose that there exist an optimal data trans-
mission scheduling solution q∗j for each j ∈ N that is an
interior point of the feasible regionQj , i.e., q∗j ∈ Int(Qj). The
optimal scheduling solution q∗j can be expressed in a closed
form as follows

q∗j (t) =
Qj
Tj

+
γ

βTj

 Tj∑
`=1

log2

(
L∗j (`)

)− Tj log2

(
L∗j (t)

)
(21)

for t = 1, 2, . . . , Tj and j ∈ N . The optimal V2I communi-
cation reliability of the overall platoon is given by

φ∗platoon (q∗) =

exp


N∑
j=0

Tj∑
t=1


(
L∗j (t)

)γ
ωj

−
2βQj

Tj∏
`=1

(
L∗j (`)

) γ
Tj

ωj


 ,

(22)

where q∗ = col{q∗j , j ∈ N}.
Proof: According to the condition and Lemma 1, we can

derive from the gradient conditions in (19)

q∗j (t) =
1

β
log2

(
ωjδj(

L∗j (t)
)γ

(ln 2)β

)
,∀j, t. (23)

Substituting (23) into the equality constraint
∑Tj
`=1 q

∗
j (`) = Qj

can get the equation with respect to δj as follows
Tj∑
`=1

log2

(
ωjδj(

L∗j (`)
)γ

(ln 2)β

)
= βQj , j ∈ N . (24)

Solving (24) can derive the explicit expression of δj as follows

δj =
1

ωj
2
βQj
Tj

 Tj∏
`=1

((
L∗j (`)

)γ
(ln 2)β

) 1
Tj

, j ∈ N . (25)

Substituting (25) back into (23) can immediately derive the
closed-form expression in (21). Moreover, substituting (21)
into the definition (14) can also obtain (22). At this point, the
theorem is proven.

Furthermore, when the optimal scheduling solution q∗j is
a boundary point of the feasible region Qj for j ∈ N , i.e.,
q∗j ∈ ∂(Qj) where there exists at least one zero component in
q∗j , i.e., ∃t ∈ {1, 2, . . . , Tj}, q∗j (t) = 0, the results in Theorem
1 may not be applicable. Hence, we extend the closed-form
results of Theorem 1 to a more general situation as follows.

For notation simplicity, let Tj = {1, 2, . . . , Tj} for each
j ∈ N . Let the index set of the platoon vehicles that will
not transmit data bits in some certain time slots be M, i.e.,
M⊂ N and M 6= ∅. For each j ∈M, we further denote by
Tj,inactive the index set of time slots in which vehicle j keeps
silent, and Tj,active the index set of time slots in which vehicle
j transmits data bits. For j ∈M, we have Tj,inactive 6= ∅ and
Tj,inactive ∪ Tj,active = Tj . For vehicle j ∈ N \ M that is
always active in each time slot, we can simply let Tj,inactive =
∅ and Tj,active = Tj .

We define Gj(t) for j ∈ N and t ∈ Tj according to (21),

Gj(t) =
Qj
Tj

+
γ

βTj

 Tj∑
`=1

log2

(
L∗j (`)

)− Tj log2

(
L∗j (t)

) .
(26)

In the above situation where q∗j ∈ ∂(Qj), ∃j ∈ N , we derive
more general results in the following theorem.

Theorem 2: Suppose that ∃j ∈ N q∗j is a boundary point
of the feasible region Qj , i.e., q∗j ∈ ∂(Qj). The index set M
can be constructed by

M = arg
j
{Gj(t) ≤ 0, t ∈ Tj , j ∈ N} . (27)
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For j ∈ M, the index sets Tj,inactive and Tj,active can be
constructed by

Tj,inactive = arg
t
{Gj(t) ≤ 0, t ∈ Tj} ,

Tj,active = Tj \ Tj,inactive.
(28)

For ` ∈ Ti,active, i ∈ N \M and for ` ∈ Ti,active, i ∈ M,
the positive (nonzero) optimal component, q∗i (`) > 0, can be
expressed in a closed form as follows

q∗i (`) =
Qi

|Ti,active|

+
γ

β |Ti,active|


 ∑
k∈Ti,active

log2 (L∗i (k))


− |Ti,active| log2 (L∗i (`))

 . (29)

The optimal V2I communication reliability of the overall
platoon is given by

φ∗platoon(q∗) =

exp

 N∑
j=0

Tj∑
t=1

(L∗j (t))
γ

ωj
−W (Tj,active, j ∈ N )

 ,
(30)

where W (Tj,active, j ∈ N ) is defined by

W (Tj,active, j ∈ N ) =
∑

j∈N ,Tj,active=∅

∑
`∈Tj,inactive

(L∗j (`))
γ

ωj

+
∑

j∈N ,Tj,active 6=∅

∑
`∈Tj,active

2βQj
∏

k∈Tj,active

(
L∗j (k)

) γ

|Tj,active|

ωj
.

(31)
Proof: As indicated in the condition, we have M ⊂ N ,

M 6= ∅, and Tj,inactive ⊂ Tj , Tj,inactive 6= ∅ for j ∈ M.
Besides, we have q∗j (t) = 0 for t ∈ Tj,inactive and j ∈M.

According to the complementary slackness as in Lemma
1 and due to the fact that q∗j (t′) = 0 for j ∈ M and
t′ ∈ Tj,inactive, the Lagrangian multiplier λj(t

′) may not
be zero. But, with the nonnegative constraints, λj(t′) always
meets λj(t′) ≥ 0. Thus, using the gradient condition, we have

∂U(q)

∂qj(t′)

∣∣∣∣
qj(t′)=q∗j (t′)

= δj + λj(t
′) ≥ δj (32)

for j ∈M and t′ ∈ Tj,inactive.
On the other side, according to Lemma 1, we have

∂U(q)

∂qj(t′′)

∣∣∣∣
qj(t′′)=q∗j (t′′)

= δj (33)

for j ∈ M and t′′ ∈ Tj,active, since λj(t
′′) = 0 under the

condition q∗j (t′′) > 0.
Combining (32) and (33), we get the following inequality

∂U(q)

∂qj(t′′)

∣∣∣∣
qj(t′′)=q∗j (t′′)

≤ ∂U(q)

∂qj(t′)

∣∣∣∣
qj(t′)=q∗j (t′)

(34)

for j ∈ M, t′ ∈ Tj,inactive and t′′ ∈ Tj,active. With the
expression of U(q∗), (34) directly results in(

L∗j (t
′′)
)γ

2βq
∗
j (t′′) ≤

(
L∗j (t

′)
)γ

2βq
∗
j (t′) =

(
L∗j (t

′)
)γ (35)

for j ∈M, t′ ∈ Tj,inactive and t′′ ∈ Tj,active.
From (35), we further have
Tj∑
t′′=1

log2

((
L∗j (t

′′)
)γ)

+

Tj∑
t′′=1

βq∗j (t′′) ≤
Tj∑
t′′=1

log2

((
L∗j (t

′)
)γ)

.

(36)
Recalling

∑Tj
t′′=1 q

∗
j (t′′) = Qj , (36) is equivalent to

γ

Tj∑
t′′=1

log2

((
L∗j (t

′′)
))

+ βQj ≤ Tjγ log2

((
L∗j (t

′)
))
. (37)

Now, combining (37) and (26) can get the following inequality

Qj
Tj

+
γ

βTj

 Tj∑
t′′=1

log2

(
L∗j (t

′′)
)− Tj log2

(
L∗j (t

′)
) ≤ 0,

(38)
which indicates Gj(t′) ≤ 0 for j ∈M, t′ ∈ Tj,inactive.

On the contrary, for q∗j (t′) = 0 and q∗j (t′′) > 0 where
t′ ∈ Tj,inactive, t′′ ∈ Tj,active and j ∈ N , using the same logic
above and Lemma 1, we can obtain(

L∗j (t
′)
)γ ≥ (L∗j (t′′))γ 2βq

∗
j (t′′) >

(
L∗j (t

′′)
)γ
, (39)

which leads to

γ

Tj∑
`=1

log2

((
L∗j (`)

))
+ βQj > Tjγ log2

((
L∗j (t

′′)
))
. (40)

(40) further indicates

Qj
Tj

+
γ

βTj

 Tj∑
`=1

log2

(
L∗j (`)

)− Tj log2

(
L∗j (t

′′)
) > 0.

(41)
In this case, we can see Gj(t′′) > 0 for q∗j (t′′) > 0 where
t′′ ∈ Tj,active and j ∈ N .

Combining (38) and (41), we have the following results{
Gj(t

′) ≤ 0, t′ ∈ Tj,inactive;

Gj(t
′′) > 0, t′′ ∈ Tj,active,

(42)

for j ∈ N . As indicated by (42), we can check the sign of
Gj(t) to determine which vehicle in N does not alway trans-
mit data bits, and in which time slots no data transmissions
occur. Thus, we can have (27) and (28).

Furthermore, once we determine the index sets M and
Tj,active for j ∈ M, we can rewrite the data transmission
integrity constraint as follows∑

t∈Tj

q∗j (t) =
∑

`∈Tj,inactive

q∗j (`) +
∑

`∈Tj,active

q∗j (`)

=
∑

`∈Tj,active

q∗j (`) = Qj
(43)

for j ∈ N , since q∗j (`) = 0 for ` ∈ Tj,inactive, j ∈ N . Thus,
using the same logic in Theorem 1, we can immediately derive
the closed-form expressions for the positive optimal schedul-
ing components,

{
q∗j (`) > 0, ` ∈ Tj,active, j ∈M

}
, and for

the optimal V2I communication reliability of the platoon as
in (29) and (30), respectively. Then, the theorem is proven.

It is remarked that using Theorems 1 and 2 we can an-
alytically calculate the reliability-optimal data transmission
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TABLE I
PARAMETER SETTINGS.

Symbol Definition Value
Tj number of time slots 300
Qj application data volume 30 Mbit
∆τ duration per time slot 0.1 s
τ desired time headway 1 s
lj−1 desired inter-vehicle spacing 8 m
α1,j , α2,j controller gains 0.3, 0.7
[vmin, vmax] velocity bounds [0, 33] m/s
[amin, amax] acceleration bounds [−3, 3] m/s2

βj0, βj1 parameters for (7) 8, 1.09 [79], [91]
βj2, βj3 parameters for (7) 0.0052, 0.0007 [79], [91]
B available bandwidth 10 MHz [92]
γ path loss exponent 2.75 [92]
PT transmission power 33 dBm [92]
N0 average background noise −95 dBm [92]

scheduling solution, q∗j , j ∈ N , for the platooning vehicles
when the temporal-spatial information, s∗j , j ∈ N , is given
from the platoon coordination layer. This essentially enables
the computation offloading of the vehicles via V2I communi-
cation to adaptively response to the coordinated platoon mo-
bility. Additionally, the optimal V2I communication reliability
of the platoon in the theorems provides an upper bound of
the reliability performance. It takes into account the channel
characteristics and the integrity and delay requirements besides
the mobility. The closed-form expression provides a deep
insight into how these aforementioned factors are coupled, thus
being helpful to the system design of MEC-enabled CVIS.
Another benefit of Theorems 1 and 2 is that the closed-form
expressions provided can be used to obtain the optimal data
transmission scheduling solution directly. We do not need to
perform a sequence of algorithmic iterations. At this point, the
computational complexity in solving the minimization problem
(16) is quite low, which can be in the order of O(1).

V. PERFORMANCE EVALUATION

In this section, we present the simulation experiments to
validate our proposed model and method and compare the
performance with other schemes.

A. Parameter Settings

We consider a platoon system with one leader vehicle
and four following vehicles in the simulations. The initial
acceleration of the vehicles is 0 m/s2, and the initial velocity
is 20 m/s. The leader is initially located at 100 m, and the
inter-vehicle distance is initialized to 10 m. sI is set to 300 m
and L is set to 10 m. We also let M = 40 to simulate
the effect of channel contention. The main simulation pa-
rameters of our control protocol, fuel consumption model
and V2I communication model are configured based on the
recent literature as summarized in Table I. More insights for
simulation implementation are detailed in Appendix C in the
online supplementary material.

B. Model Validation

Fig. 3 shows that the platoon leader decelerates in the
first few seconds and then increases its acceleration to boost
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Fig. 3. The optimal accelerations of the platooning vehicles.
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Fig. 4. The optimal velocities of the platooning vehicles.
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Fig. 5. The optimal trajectories of the platooning vehicles.

the velocity. Due to the car-following control, the following
vehicles also react to the leader’s behavior by reducing their
accelerations at the beginning. After about 100×0.1 = 10 sec-
onds, the vehicles can stably converge to the uniform motion
state. As shown in Fig. 4, the velocity of the leader decreases to
about 17.58 m/s while the following vehicles can finally reach
the stable velocity state as that of the leader. In this way, the
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Fig. 6. The car-following velocity errors.
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Fig. 7. The car-following position errors.

velocities of the platooning vehicles are optimized to save fuel
consumption meanwhile achieving platoon consensus. Fig. 5
illustrates the temporal-spatial trajectories of the platooning
vehicles, indicating that the vehicles guarantee the motion
smoothness under the control. In Fig. 6, the inter-vehicle ve-
locity error between any two platooning vehicles is stabilized,
i.e., (vj(t) − vj−1(t)) arriving at zero for j = 1, 2, 3, 4.
Similarly, the position error, (−si(t) + s0(t) − i × l0) for
j = 1, 2, 3, 4, can also reach zero after about 10 seconds as
shown in Fig. 7. The results indicate that the proposed fuel-
efficient optimization solution with the car-following control
can stably coordinate the whole platoon.

Fig. 8 illustrates each vehicle’s reliability-optimal data trans-
mission scheduling. The platooning vehicles increase the num-
ber of data bits served in the time slots when approaching the
roadside infrastructure and when the V2I communication link
can support increasing data load. On the contrary, the vehicles
reduce their data bits to guarantee the probability of success
in data transmissions when they are moving far away from the
infrastructure. The increasing or decreasing rate of each vehi-
cle’s data allocation depends on its moving velocity relative
to the infrastructure. In this fashion, the vehicles can adapt
data transmissions according to their mobility. Additionally,
we also compare the analytical scheduling solutions with those
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Fig. 8. The optimal V2I data scheduling solution of each vehicle.
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Fig. 9. The cumulative transmitted data bits of each vehicle.
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Fig. 10. The optimal V2I communication reliability of each vehicle.

obtained by performing numerical optimization in Appendix
D in the online supplementary material. The analytical results
match the numerical results, thus validating Theorems 1 and 2
derived in our paper. From Fig. 9, we see that the vehicles can
complete the transmission of their required data volume (i.e.,
30 Mbit) by the given deadline. This result indicates that the



13

0 50 100 150 200 250 300
4

4.5

5

5.5

6
Fu

el
 c

on
su

m
pt

io
n 

ra
te

 [L
/1

00
km

]

Fig. 11. The variation of each vehicle’s fuel consumption under our method
using fuel-efficient optimization.

optimal scheduling solution satisfies the transmission integrity
and delay-limit requirements.

To facilitate the comparison of the communication relia-
bility, we let pj(q∗j (t)) = 1 − 10−nj(t) where we call nj(t)
the reliability exponent that can be uniquely determined by
the reliability pj(q

∗
j (t)). That is, we calculate the reliability

exponent by nj(t) = − log10

(
1− pj(q∗j (t))

)
, which is an

increasing function of pj(q∗j (t)). Fig. 10 shows the reliability
exponent of each vehicle in each time slot. It is seen that
the communication reliability of the platooning vehicles s-
lightly decreases from the beginning to about 12.5 seconds
when they significantly increase the transmitted data load. By
comparison, even when they are moving far away from the
infrastructure, they can increase the communication reliability
by reducing the data load in the last 15 seconds. Moreover,
note that the application of 3GPP Ultra-Reliability and Low-
Latency Communication (URLLC) in 5G generally requires
that the transmission reliability for transmitting a data packet
of 32 bytes with the user-plane latency of 1 ms should achieve
at least 99.999% = 1−10−5. From Fig. 10, it is seen that the
reliability exponent of the platooning vehicles is guaranteed
above 5, i.e., nj(t) > 5 for all j and t, implying that
pj(q

∗
j (t)) > 1 − 10−5 for all j and t. This means that the

optimal data transmission scheduling solution can significantly
improve the transmission reliability over the level required by
URLLC. Additionally, the URLLC requires that the average
data transmission rate with the reliability of 99.999% should
be 32 × 8 × 0.1 × 103 × 10−6 = 0.0256 Mbit/slot. From
Fig. 8, it is also seen that the average amount of data bits
transmitted in most of time slots (e.g., t ∈ [0, 250]) is higher
than the URLLC-required level, 0.0256 Mbit/slot. Therefore,
these results indicate that our proposed method can deal with
more data load with greatly satisfying URLLC requirements.

C. Performance Comparison

We further compare our joint method with several baselines
that are based on different platoon control and uniform data
scheduling schemes. In these baselines, the data volume Qj
for each vehicle j is evenly distributed across the time slots,
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Fig. 12. The variation of each vehicle’s fuel consumption under the other
compared methods.
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Fig. 13. The time-varying fuel consumption of the whole platoon under
different methods.

ensuring that each time slot receives an equal share of the
data volume. This uniform distribution provides a consistent
baseline, allowing for a fair evaluation of the effectiveness
of our more advanced scheduling strategy. Specifically, we
consider two representative car-following control protocols in
the platoon coordination layer, the predecessor-following (PF)
method (denoted by M1) and the bidirectional (BD) method
(denoted byM2), which have also been widely adopted in the
current literature [93]. The key difference between our platoon
coordination and these two methods lies in the inter-vehicle
information flow topology. The PL control method uses only
the state-feedback information from the predecessor of each
following vehicle to construct the control input, while the
BD method uses the state-feedback information from both the
preceding and rear vehicles of an individual to construct the
control input. We also consider the uniform-motion scheme
(denoted by M3) as a baseline, in which the vehicles are
always moving at the given initial velocity. The compared
methods, Ml for l = 1, 2, 3, uniformly schedule application
or task data in each time slot. We also implement a decen-
tralized MPC-based ACC for vehicle platooning to validate
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Fig. 14. The communication reliability per time slot under different methods.

Fig. 15. The platoon communication reliability under different methods.

our method’s superior performance. This MPC-based method
uses vehicular real-time radar measurements and enables each
following vehicle in a platoon to adapt its inter-spacing and
velocity relative to its predecessor. The MPC-based method
belongs to the optimization-based control paradigm, consid-
ered a state-of-the-art control technique for various control
systems. Considerable works have also applied such a method
to platoon systems, such as [50], [58], [78], [93]. For per-
formance comparison, the above compared methods do not
jointly realize platoon coordination and transmission reliability
optimization.

From Fig. 11 and Fig. 12, it is seen that our method drives
each platoon vehicle to converge to a lower fuel consumption
level in a consensus manner. By comparison, methods M1

and M2 converge to a similar fuel consumption level, even
though they adopt different platoon control protocols. Since
M3 follows the uniform motion mode, it consumes the
same fuel volume in different time slots. The MPC-based
method can drive the following vehicles to converge to the
same fuel consumption level as that of the leader since the
ACC controller ensures that the vehicles follow the leader’s
velocity while keeping a safe inter-spacing. Recalling that (7)
estimates the individual fuel consumption based on the time-

Fig. 16. The comparison of platoon communication reliability under different
channel access numbers.

varying velocity, the fuel consumption profiles in Figs. 11
and 12 also reflect the convergence behaviors of the vehicles
under different platooning methods. We also provide additional
figures to show the velocity profiles of the vehicles and their
real-time relative distances to the roadside infrastructure under
different platoon coordination controllers in Appendix D in
the supplementary material. The supplementary results show
that all the platoon controllers can stabilize the vehicles and
guarantee stability and safety. Even though all the methods
can coordinate the platooning vehicles, our method enables the
platoon to reach the most fuel-efficient mobility. The essential
reason is that our platoon coordination control incorporates
fuel efficiency optimization and drives the vehicles to converge
to a fuel-efficiency steady velocity.

Fig. 13 shows the aggregate fuel consumption from the
platoon perspective under different methods. We can see that
the whole platoon consumes less fuel per time slot when the
vehicles reach the stable state under our proposed method. This
reduction in fuel consumption is achieved because our method
optimizes vehicle dynamics through the LPF control architec-
ture, minimizing unnecessary acceleration and taking advan-
tage of aerodynamic benefits within the platoon. Our method
reduces the fuel consumption per time slot of the platoon
by about 16.4% on average, compared to the other methods.
Meanwhile, Fig. 14 illustrates the communication reliability of
the platoon under different methods, showing that our method
is able to maintain the communication reliability over all the
time slots. Specifically, the communication reliability of the
platoon with our joint data transmission scheduling scheme is
alway greater 1−10−5 since our reliability exponent is always
guaranteed above 5, while the other three methods, M1, M2

and M3, can satisfy the URLLC requirement only when the
vehicles are close enough to the roadside infrastructure, e.g.,
when t ∈ [50, 170]. The MPC-based method can provide the
URLLC performance only when t ∈ [75, 200]. When the
vehicles are moving far away from the road infrastructure,
the communication reliability obviously decreases under the
other methods. Interestingly, even in this situation, our method
can slightly improve the reliability. The main reason is that
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our method adaptively schedules the transmission data across
different time slots. When the relative distance between the
vehicles and the roadside infrastructure decreases, i.e., the
channel quality becomes better, more application or task data
are transmitted to the infrastructure. When the channel be-
comes worse, less data remains to be transmitted. In this way,
our method adaptively boosts the probability of success in data
transmission according to the vehicle mobility. In Fig. 15, the
global communication reliability of the platoon is compared.
It is shown that our method achieves the best communication
reliability, with the reliability exponent being about 42.43%
higher than that of the other methods on average.

We further conduct different simulations under different
numbers of nodes contending the channel and different data
loads. Fig. 16 shows the communication reliability of the
platoon with increasing the number of contending nodes. It is
observed that increasing the channel access number makes the
channel become worse and thus results in worse communica-
tion reliability. Even in this case, our method outperforms the
other methods, making the reliability exponent about 81.19%
higher than that of the other methods on average. In particular,
our method gets a 50.51% increase in the reliability exponent
on average when compared to the MPC-based method. In
Fig. 17, we compare the communication reliability of the
platoon under different data loads. It is shown that our method
provides the highest communication reliability in all the data
load situations. From Fig. 17, the communication reliability of
our method is about 1.31 times higher than that of the other
methods on average. In particular, even when the data load
of each vehicle is relatively large, e.g., at Qj = 80 Mbit for
all j, our method can achieve the communication reliability
of about 1 − 100.5277 ≈ 70.33%, while the communication
reliability of the other methods is only about 14.47% on
average. Combining all the above figures, it is seen that our
method greatly benefits the platoon system by improving the
fuel efficiency and communication reliability of the vehicles.

VI. CONCLUSION AND FUTURE WORK

This paper investigates the joint implementation of pla-
toon coordination and data transmission scheduling for MEC-
enabled CVISs. Specifically, we develop a two-tier hierar-
chical framework. It integrates a fuel-efficient optimization
model with a car-following platoon control protocol and a
V2I communication reliability optimization model. We de-
rive a closed-form expression for the reliability-optimal data
transmission scheduling solution that characterizes platoon
mobility, channel characteristics, transmission integrity, and
delay-limit requirements of vehicles’ applications or tasks.
The proposed joint method enables platooning vehicles to
adaptively schedule their transmission data across different
time slots according to the platoon’s mobility. Simulation
results show that our method outperforms traditional methods
regarding fuel efficiency and communication reliability. We
expect to consider heterogeneous vehicular networking in
future work. We will also optimize the control robustness of
the platooning vehicles by extending the joint framework to
different information topologies.

Fig. 17. The comparison of platoon communication reliability under different
transmission data loads.

Future work will focus on two key areas. First, we will
investigate the optimization of data transmission and fuel
efficiency during vehicle platoon handovers between different
MECs. Second, we will incorporate the effects of braking
energy recovery, particularly for hybrid and electric vehicles.
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APPENDIX A
ADDITIONAL LITERATURE REVIEW

It can be recognized from the recent survey papers, such as
[1]–[6], that numerous studies are focusing on platoon control
for connected and autonomous vehicles (CAVs). As summa-
rized in [3], a general platoon system of CAVs consists of
four components: node dynamics, information flow network,
distributed controller, and formation geometry. Modifications
or improvements in different components of the platoon sys-
tem can lead to a new control design. Many advanced control
methods and architectures have been proposed from the control
theory perspective. In particular, researchers propose many ad-
vanced robust control solutions to deal with different impacts
arising from platoon-based sensing, wireless communication,
human factors, and information-aware controllers [1]. The
representative robust platoon control solutions include robust
model predictive control (MPC) [7], sliding mode control [8],
and H-Infinity methods [9]. Besides, platoon-based commu-
nication and control co-design has also received increasing
attention. For example, [10] combines relay-based commu-
nication with MPC-based platoon controllers to reduce the
position errors of platooning vehicles. [11] jointly optimizes
the LTE resource allocation among platooning vehicles and
their control parameters using graph matching and heuristic
gradient descent-based algorithms. In [12], radio resource
allocation and platoon control are jointly designed to reduce
tracking errors of platooning vehicles. [13] develops a joint
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network access scheduling and platoon control framework
to mitigate access conflicts meanwhile guaranteeing platoon
stability. Many other advanced co-design solutions can also be
found in the context of networked control systems [14]–[16].
Even though a wide variety of communication and control
solutions for CAV platoons have been proposed in the above
existing literature, how to join integrity- and delay-constrained
vehicle-to-infrastructure (V2I) data transmission scheduling
into a platooning framework to optimize two system goals
simultaneously, the fuel efficiency and transmission reliability
of platooning vehicles, remains to be explored.

In this paper, we focus on a mobile edge computing (MEC)-
enabled cooperative vehicle-infrastructure system where a
vehicle platoon aims to offload computation to a roadside
infrastructure, i.e., an edge computing node 1. In this appli-
cation scenario, computation offloading based on a reliable
data transmission scheduling strategy can promote platoon-
based connected vehicles by expanding their onboard task
processing capacity. Computation offloading with guaranteed
reliability enables autonomous vehicles to leverage edge com-
puting power to process their sensor data like massive camera
and LiDAR data. Edge computing helps connected vehicles
achieve situational awareness by combining information col-
lected and processed at the edge and applying computation-
intensive algorithms like AI and machine learning to facilitate
autonomous driving or platoon control applications. On the
other side, the design of a data transmission scheduling
strategy relies on not only the channel characteristics but also
the platooning vehicles’ mobility and real-time trajectories. In
other words, platoon control or car-following dynamics can
impact computation offloading performance. Motivated by the
two sides mentioned above, we aim to develop a joint platoon
coordination and data transmission scheduling framework. Our
framework integrates fuel-efficient optimization and reliable
data transmission scheduling into a platoon system. The es-
sential difference between our work and the existing literature
lies in two aspects:

i) We propose a fuel efficiency optimization model and
combine it with a car-following control protocol. Thus, we

1Our study specifically focuses on the data transmission process and the
energy consumption of platooning vehicles within the MEC framework. We
did not include MEC’s computational energy consumption in our analysis,
since it can be regarded as a separate research direction.
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can enable fuel-efficient car-following control for platoon
coordination.

ii) We model the platoon-based V2I communication re-
liability considering fuel-efficient car-following dynamic-
s, V2I channel characteristics, and upper-layer application
constraints. Moreover, we derive analytical solutions for
reliability-optimal data transmission scheduling for platooning
vehicles under fuel-efficient car-following control.

We enable vehicles’ data offloading to adapt to platoon
mobility under fuel-efficient car-following coordination and
satisfy data integrity and delay constraints. Our method pro-
vides new insight into implementing platoon-based coopera-
tive vehicle-infrastructure systems in terms of Eco-driving and
reliable V2I communication.

APPENDIX B
CONVEXITY PROOF OF U(q)

In this appendix, we provide a detailed proof of the con-
vexity of the function U(q) as defined in the manuscript.

The function U(q) is given by

U(q) =

N∑
j=0

Tj∑
t=1

(
L∗j (t)

)γ
2

(M+N+1)qj(t)

B∆τ

ωj
. (1)

To determine the convexity, we analyze the second-order
properties of the function. We compute the second derivative
of the individual terms within the double sum. For a fixed j
and t, the term is:

f(qj(t)) =
(L∗j (t))

γ2
(M+N+1)qj(t)

B∆τ

ωj
. (2)

The first derivative of f(qj(t)) is

f ′(qj(t)) =
(L∗j (t))

γ2
(M+N+1)qj(t)

B∆τ ln(2) · (M+N+1)
B∆τ

ωj
. (3)

And the second derivative of f(qj(t)) is

f ′′(qj(t)) =
(L∗j (t))

γ2
(M+N+1)qj(t)

B∆τ (ln(2))2
(

(M+N+1)
B∆τ

)2

ωj
.

(4)
It is evident that the second derivative f ′′(qj(t)) is positive

because

• (L∗j (t))
γ > 0;

• 2
(M+N+1)qj(t)

B∆τ > 0;
• (ln(2))2 > 0;

•
(

(M+N+1)
B∆τ

)2

> 0;
• ωj > 0.

Since all terms are positive, f ′′(qj(t)) > 0. Therefore,
f(qj(t)) is convex for each j and t. The function U(q) is
a sum of the convex functions f(qj(t)). The sum of convex
functions is also convex. Thus, the function U(q) is convex.

This step-by-step proof demonstrates that by analyzing the
second derivative of each term in the sum and establishing its
convexity, we can conclude that the overall function U(q) is
convex.

APPENDIX C
INSIGHTS FOR SIMULATION IMPLEMENTATION

1) Simulation platform and vehicle mobility model: We
implement the proposed fuel-efficiency car-following mobility
optimization and the data transmission scheduling solution
with MATLAB on a computer with four-core processor: In-
tel(R) Core(TM) i7-8750H CPU @ 2.20GHz-2.21GHz and
RAM: 24GB. In the simulation experiment, we focus on one-
dimensional vehicle platooning scenarios as in the existing
literature [7], [9], [10], [17]–[22], and exploit the discrete-time
longitudinal dynamics model (2) to simulate the mobility of
each platooning vehicle. This model has been well investigated
and widely accepted for longitudinal platoon control design
and simulation in the literature, such as [10], [18], [19]. The
initial state of the platoon is given as follows: the leader is
located at s0(0) = 100m while sj−1(0) − sj(0) = 10m for
j = 1, 2, 3, 4 initially; the velocity of the vehicles is initialized
to vj(0) = 20m/s and their acceleration is initialized to
aj(0) = 0m/s2 for all j. The access point of the edge cloud
is located at [300, 10]T (m).

2) Fuel efficiency optimization and car-following control:
In the simulation, we set up the fuel-efficient car-following
mobility optimization model in the upper layer of the pro-
posed hierarchical framework by using a nonlinear optimiza-
tion modeling and algorithmic differentiation framework with
flexible interfaces to MATLAB, CasADi [23], and exploit
a widely-used interior point solver, IPOPT [24], to obtain
the optimal fuel-efficient control input for the platoon leader.
The parameter settings for the fuel efficiency optimization
are detailed in Table I, which are given according to [25],
[26]. The control input of the other followers in the platoon is
calculated based on the car-following control protocol (4). The
vehicle-to-vehicle (V2V) information flow topology follows
the well-known decentralized control structure, predecessor-
leader-follower (PLF) [2], [3].

3) Vehicle-to-infrastructure communication model: Since
the vehicle-to-infrastructure (V2I) channel fading is charac-
terized by the Rayleigh distribution model and the transmis-
sion performance is analytically described by mathematical
models (9) to (12), we are allowed to simulate the V2I
communication performance by using the analytical models.
In the communication models, the time-varying transmitter-
receiver distance is calculated based on the vehicles’ position
relative to that of the edge cloud. The channel characteristics
parameters, such as the bandwidth, the transmission power,
the average background noise, and the path loss exponent,
are given in Table I according to the MATLAB simulation
configuration on the LTE-based cellular vehicle-to-everything
(C-V2X) in Mode 3 in [21]. Each vehicle’s data transmission
scheduling solution in the lower layer of the proposed hier-
archical framework is calculated using our proposed closed-
form expressions as given in Theorems 1 and 2. Here, we
remark that the communication performance is evaluated by
using parameterized mathematical models instead of following
a discrete event-based simulation approach. The model-based
simulation approach is widely adopted for the simulation of
various communication systems in current literature, such as
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C-V2X network simulation in Mode 3 and Mode 4 [21], [22],
UAV-assisted air-to-ground (A2G) communication simulation
[27], MIMO beamforming and channel estimation [28], [29],
Intelligent Reflecting Surface (IRS)-assisted and relay-based
communication simulation [30]. Furthermore, it is recognized
that the existing studies [21], [22], [27]–[30] also implement
their system models and algorithms with MATLAB. Therefore,
according to the literature, we implement our simulation
experiment with MATLAB using the model-based approach.
Implementing the system model with other programming
frameworks and discrete event-based network simulators, such
as Veins [31], will require additional efforts in developing and
integrating numerical computing, optimization, and control
functionalities and modules, which is left as an important
direction of our future work.

APPENDIX D
SUPPLEMENTARY SIMULATION RESULTS

4) Method Validation: In Fig. 1, the number of data bits al-
located by each vehicle in different time slots varies according
to the relative distance between the vehicle and the roadside
infrastructure. When the vehicle is closer to the edge node, it
offloads more data since the channel quality is better. On the
contrary, the vehicles reduce the data load when the channel
quality worsens. Hence, our method enables the platooning
vehicles to adapt their data allocation according to the channel
condition. More importantly, our method guarantees that the
vehicles successfully offload all the required data by the
deadline. Fig. 1 also compares the optimal data transmission
scheduling solution of each platooning vehicle using our
analytical model with that obtained by a numerical optimiza-
tion approach. It is seen that the theoretical results match
the numerical results, thus validating the derived analytical
solution given in Theorems 1 and 2.

5) Relative Distance to Infrastructure and Velocity Profile:
In Fig. 2 and Fig. 3, we show the time-varying relative distance
to the roadside infrastructure and velocity profile of each pla-
tooning vehicle under different controllers, respectively. Fig. 2
demonstrates that the platooning vehicles have a similar posi-
tion trajectory under car-following coordination. The relative
distance to the infrastructure decreases when the vehicles ap-
proach the infrastructure, while the distance increases when the
vehicles move away from the infrastructure. In addition, since
our method and the other methods,M1,M2 andM3, follow
the same control paradigm that is based on car-following
dynamics and have the same initial configurations, the relative
distance profiles resulting from the car-following controllers
are similar to each other. The model predictive control (MPC)-
based method falls into another control paradigm, i.e., using a
constrained optimization technique. The MPC-based method
can handle vehicles with different initial velocities and has
relative distance profiles different from the car-following meth-
ods’. In Fig. 3, we can see that each control method can
enable the convergence of the platooning vehicles to a stable
state, guaranteeing platoon stability and safety. However, the
steady velocity of the platoon under our method is different
from that under the other controllers. Since our car-following

platoon coordination is based on fuel-efficiency optimization,
our method can find the fuel efficiency-optimal steady velocity,
about 17.58m/s, for the platoon system and then drive the
vehicles to converge to this fuel-efficient velocity. Recalling
the fuel consumption evaluation model (7) in the main text, the
fuel consumption level of each vehicle is evaluated based on its
real-time velocity [25], [26]. Nevertheless, fuel consumption
is not a monotone function of a vehicle’s velocity, so simply
reducing it may not save fuel energy. Our method incorporates
a fuel efficiency optimization model with the car-following
controller, improving the fuel efficiency of the entire platoon
under car-following control.
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Fig. 1. The optimal V2I data scheduling solution obtained under the analytical model and the numerical optimization approach.
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Fig. 2. The time-varying relative distance to the infrastructure of the vehicles under different platoon controllers.
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Fig. 3. The velocity profiles of the vehicles under different platoon controllers.
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