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Abstract—Cognitive radio-enabled vehicular nodes as unlicensed users can competitively and opportunistically access the radio
spectrum provided by a licensed provider and simultaneously use a dedicated channel for vehicular communications. In such cognitive
vehicular networks, channel access optimization plays a key role in making the most of the spectrum resources. In this paper, we
present the competition among self-interest-driven vehicular nodes as an evolutionary game and study fundamental properties of the
Nash equilibrium and the evolutionary stability. To deal with the inefficiency of the Nash equilibrium, we design a delayed pricing
mechanism and propose a discretized replicator dynamics with this pricing mechanism. The strategy adaptation and the channel
pricing can be performed in an asynchronous manner, such that vehicular users can obtain the knowledge of the channel prices prior
to actually making access decisions. We prove that the Nash equilibrium of the proposed evolutionary dynamics is evolutionary stable
and coincides with the social optimum. Besides, performance comparison is also carried out in different environments to demonstrate
the effectiveness and advantages of our method over the distributed multi-agent reinforcement learning scheme in current literature in
terms of the system convergence, stability and adaptability.
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1 INTRODUCTION

V EHICULAR networks build the fundamental blocks of
connected vehicles and need to serve rapidly increas-

ing requirements of future intelligent transportation system-
s (ITS) and tremendous vehicular telematic applications,
such as bandwidth-intensive real-time traffic monitoring,
network-wide traffic big data collection, large-volume ve-
hicular content transmissions, and some others. Consid-
erable research efforts have been devoted to the field of
vehicular networks. For instance, U.S. FCC has allocated an
exclusive-use frequency band of 75 MHz for dedicated short
range communication (DSRC) in vehicular environments,
which is between 5.850 GHz and 5.925 GHz [1]. However,
due to the inherent limitations, none of DSRC and mobile
cellular networks can independently and fully address all
types of growing applications in terms of network coverage,
bandwidth as well as quality of service (QoS). In this con-
text, vehicular hybrid channel access paradigms based on
cognitive radio (CR) [2], [3] have been developed to enhance
the connectivity of vehicles and improve the utilization of
constrained spectrum resources.
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Fig. 1. An explanatory scenario of hybrid channel access in a cognitive
vehicular network and the timing diagram of access strategy evolution
of vehicular populations and dynamic channel pricing.

We consider a cognitive vehicular network as shown
in Fig. 1, where vehicular nodes with CR can use multi-
mode radio interfaces deployed onboard to dynamically
access two types of radio channels, one of which is the
vehicular exclusive channel, such as the DSRC channel,
that is particularly reserved for reliability-critical vehicular
communications, and the other is known as the shared-use
channel [4], [5], which is provided by a licensed user (e.g., a
cellular base station). In the same service cell of the licensed
user, a great number of vehicular nodes as unlicensed
users need to make decisions on accessing the opportunistic
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shared-use channel. The integration of both the exclusive-
use and the shared-use channels for CR-enabled vehicles
can be regarded as a cooperation between heterogeneous
spectrum resources. In such a cognitive vehicular network,
two fundamental questions arise:

• how to model the radio channel access by a large pop-
ulation of competitive vehicular nodes and analyze their
dynamic behaviors?

• what is an incentive to induce vehicular nodes to achieve
a socially optimal and balanced utilization of the spectrum
resources, if vehicles make access decisions in a self-
interest-driven manner?

In reality, individual users are not usually with social re-
sponsibility. Indeed, it is crucial and challenging to under-
stand the dynamics of hybrid channel access of large-scale
vehicular users with bounded rationality in pursing their
benefit. The questions mentioned above become much more
challenging when the vehicular populations are changing
over time (i.e., the number of vehicular users within the
service area is time-varying). In this situation, a dynam-
ically adaptive incentive mechanism is needed, such that
the vehicular nodes are able to adapt their access strategies
efficiently to the changing environment. Then, another basic
question follows:

• How well can an incentive mechanism applied to selfish
users perform in terms of the adaptability and the opti-
mality of the resulting system?

Our work considers the fundamental questions above.
To be specific, we pose the key problem aforementioned as
a noncooperative game. Motivated by evolutionary dynam-
ics of biological populations in nature where self-interest-
driven individuals usually replicate the behavior of others
who can lead to higher benefit [6], [7], we develop a dy-
namic evolutionary game-theoretic framework. Moreover,
different from much existing literature in which the Nash
equilibrium is usually considered as the system solution,
we reveal the inefficiency of the Nash equilibrium in the
sense that the total cost utility of the vehicular nodes is
not minimized. That is, because the Nash equilibrium in
a noncooperative game are generally inefficient as widely
reported in existing literature [8], [9], [10], the Nash equi-
librium is not necessarily the optimal point and may not
be suitable to be the final solution. We devise a proper
incentive mechanism as the dynamic control of channel
access behavior of selfish vehicular nodes, which is based
on dynamic congestion pricing. Specifically, vehicular nodes
are required to pay a certain price to the spectrum resource
provider according to their selected channel, and such a
price is designed according to the time-varying congestion
degree associated with a channel. We formulate the price of
a shared-use channel based on the concept of marginal social
cost that is originally proposed by Pigou [11]. Accordingly,
a vehicular node should be charged by the marginal social
cost increased by its participation in channel competition. It
is also worth pointing out that the dynamic pricing based
the marginal social cost has been widely adopted as an
effective means of macro control in many other fields such
as macroeconomics, market management, transportation,
and some others [11], [12].

However, from the practical implementation perspec-
tive, channel pricing of the licensed provider and channel
access decision-making of individual vehicles should not
be operated on the same time scale. Directly imposing a
real-time changing channel congestion price (this means
that the time resolution of updating the price is as the
same as that of making channel access decisions) on the
competing vehicular nodes may be impractical in actual
situations. This is due to three major facts: i) it is usually
cumbersome and annoying for vehicular users to respond
to the fast-changing price of a channel at the same moment
when they are making decisions on accessing the channel;
ii) vehicular nodes should first learn the channel congestion
price and then actually determine which channel to access;
and iii) the limited transmission capacity of the backhaul
connection between vehicle nodes and resource providers
could delay the computing information exchanged between
them. At this point, it is more meaningful to allow vehicular
nodes to get prior knowledge of the channel prices, so
that vehicular nodes can make informed decisions before
actually accessing a channel. Hence, we propose a delayed
dynamic pricing mechanism, where the congestion price of
each channel is updated on the basis of a relatively large
time period, i.e., a time interval that is larger than the time
slot for evolution of the cognitive vehicular network. Within
the large time interval, the channel price stays constant
(as shown in an explanatory scenario in Fig. 1). In this
way, the access strategy adaptation and the update of the
channel prices are performed in an asynchronous manner.
Besides, when introducing the delayed pricing mechanism
to regulate the discrete evolutionary dynamics of the vehi-
cles’ opportunistic channel access, an additional challenging
question arises that whether the evolutionary dynamics can
still guarantee its convergence, which is also answered in
detail in this paper.

The main contributions of this work can be summarized
as follows:

• We present an evolutionary game model to analyze
the evolution of self-interest-driven CR-enabled ve-
hicular nodes contending for the shared-use chan-
nels. We prove that it is an exact potential game and
guarantees the existence and the stability of the Nash
equilibrium.

• To further address the inherent inefficiency of the
Nash equilibrium-based solution, we propose a de-
layed dynamic pricing mechanism as an incentive
for regulating vehicular nodes’ behavior based on
the marginal costs of the channels. By integrating the
proposed pricing mechanism with the evolutionary
game, we develop a discretized replicator dynamics
with the delayed congestion pricing to enable the
strategy learning and adaptation of vehicular nodes
and the price updating of the channels in an asyn-
chronous manner. We further investigate the effect of
the pricing delay on the proposed discretized repli-
cator dynamics and prove that its Nash equilibrium
coincides with the socially optimal solution.

• We theoretically and numerically study the asymp-
totic convergence and stability of the proposed evo-
lutionary dynamics with the delayed dynamic pric-
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ing using two types of learning rates, i.e., a dynamic
learning rate and a constant learning rate, respective-
ly. We analytically derive the bound of the difference
between the proposed evolutionary dynamics and
that without a delay in pricing, and further obtain
the theoretical gap between the steady performance
of the proposed evolutionary dynamics and the ideal
optimum, which is shown to be in the same order of
the implemented learning rate.

The remainder of this paper is organized as follows. In
Section 2, we present a review of the related work. Section 3
describes the system model. In Section 4, an evolutionary
game model is formulated for decision-making behavior
of vehicular nodes in hybrid channel access. Subsequently,
a replicator dynamics algorithm with a delayed dynamic
pricing mechanism is developed in Section 5. Section 6
presents numerical results and discussions. Finally, Section
7 concludes this work as well as outlines our future work.

2 RELATED WORK

The emerging CR, sometimes termed software defined ra-
dio, is also introduced to vehicular nodes, which has s-
pawned cognitive vehicular networks, such that vehicular
nodes can obtain local intelligence and self-cognition [2],
[5]. The authors of [13] take into consideration shared-use
and exclusive-use channels in a general cognitive vehicular
network, for which constrained Markov process formula-
tions are developed. In despite of appealing opportunities
cognitive vehicular networks can provide, there exist some
challenging fundamental issues in modeling, control and
optimization aspects to be handled, such as spectrum sens-
ing and sharing [3], [4]. There have been numerous research
efforts made on developing different cooperative spectrum
sensing solutions for accurate detection of the licensed
users’ channel state, e.g., [14]. Dynamic spectrum sharing
or dynamic channel access is another key functionality of
CR networks, which is focused on in our work.

Indeed, a vast amount of other works have also been
published in the field of dynamic spectrum access, among
which the game theory is widely employed as a funda-
mental and powerful tool for modeling of decision-making
behavior of large-scale populations [15]. Different types of
game-theoretic models have been proposed, such as the
stochastic learning-based potential game formulations [16],
the coalitional game models [17], etc.. In [18], the authors
also propose an evolutionary game framework to analyze
the dynamics of access network selection of users. Some
other noncooperative game-theoretic formulations can be
referred to in [19], [20], while another study [21] presents
a cooperative game model to address the allocation of
secondary spectral resources among a population of CR
secondary users. There are also many research efforts that
have been made based on reinforcement learning to address
the issue of channel allocation such as [22], [23], [24]. In [22],
the deep Q-network (DQN), a representative reinforcement
learning that is originally proposed by DeepMind [25] and
currently has been widely applied in many other fields
such as robot control, computer vision, human-machine
interactive games, etc., is adopted for dynamic multichannel
access. In the application situation, only a single node is

considered. In [23], a multi-agent reinforcement learning is
used to make a decision on the selection of a radio access
technology (RAT) from a feasible set, which can provide
Nash equilibrium strategies. In [24], a distributed learning
mechanism is proposed based on evolutionary game theory
for spectrum access, which can well achieve an equilib-
rium with guaranteed evolutionary stability. The authors
also show that the evolutionary dynamics-based learning
mechanism can outperform the traditional distributed Q-
learning mechanism. In these aforementioned works, the
evolutionary equilibrium or Nash equilibrium is consid-
ered as the system solution and the potential inefficiency
of the evolutionary equilibrium or Nash equilibrium has
been neglected. Nonetheless, from the global perspective,
Nash-equilibrium solutions may not necessarily optimize
the overall benefit of the decision makers.

To optimize the spectrum sharing in CR networks, many
different dynamic pricing policies have been devised as a
kind of adaptive control on the decision-making behavior
of the CR users. There are a number of recent works, such
as [26], [27], [28], [29], that deal with the price optimiza-
tion problem with a hierarchical Stackelberg game-theoretic
framework. In these works, the optimal spectrum price is
dependent on the Stackelberg equilibrium points. In the
works [30], [31], the competition among secondary users
is formulated as a noncooperative game where a pricing-
based policy is also applied to adapt the users’ spectrum
buying decisions. In their models, and the evolutionary
dynamics is adopted to iteratively adjust the users’ access
strategies, and the Nash equilibrium obtained is considered
as the solution to the game. Some other works [32], [33] have
investigated different pricing models for spectrum trading,
including market-equilibrium, competitive, and cooperative
pricing models. However, the issue about the inefficiency of
a Nash equilibrium-based solution has not been fully con-
sidered in the above works. Differently, in [10], the authors
present the interaction between primary service providers
and secondary users as an oligopoly market and establish
a dynamic Bertrand game, where the Nash equilibrium is
revealed inefficient. Although [10] meaningfully proves the
inefficiency of Nash equilibrium, they have not investigated
the impact of pricing delays on the repeated game.

Here, the essential goals of our work are twofold in
modeling and optimization aspects. First, we propose a
dynamic evolutionary game framework with a discretized
replicator dynamics to model the evolution of opportunistic
channel access of vehicular nodes in a cognitive vehicular
network. Then, with respect to optimization, our objective
is to induce the vehicular nodes to approach the global opti-
mal performance through the repeated game. Different from
much game-theoretic approach-based literature, we theoret-
ically and numerically show the inherent inefficiency of the
Nash equilibrium, and propose a channel congestion pricing
mechanism based on the marginal social cost to motivate
selfish vehicular nodes to achieve a social optimum of the
spectrum allocation. Moreover, we account for information
delay in spectrum pricing and investigate how a delayed
spectrum price can affect the convergence and steady per-
formance of the proposed discretized evolutionary dynam-
ics, which has been mostly ignored in the aforementioned
literature on spectrum sharing and spectrum pricing. We
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also study the convergence and steady performance of the
proposed dynamics using a dynamic learning rate and a
static learning rate, respectively, analytically deriving the
order of the difference between the discretized evolution-
ary dynamics with the proposed delay pricing mechanism
and the corresponding evolutionary dynamics with a real-
time pricing under these two types of learning rates. The
theoretical developments in this paper can shed light on
a trade-off between the adaptability and the optimality of
channel access management in cognitive vehicular networks
in terms of actual system design.

3 SYSTEM MODEL

3.1 Hybrid channel access
We consider a V2I scenario, e.g., Fig. 1, where there are
a large number of CR-enabled vehicles within a service
area, N , overlaid with a licensed user (e.g., a base station).
Let the total number of vehicular nodes in N be N , i.e.,
N = |N |. Here, we remark that N is indeed an environ-
mental parameter which is usually time-varying due to the
vehicle mobility. Nevertheless, the time scale (e.g., several
ten seconds or several minutes) for changing the macro-level
spatial distribution of vehicles within the area is much larger
than a time slot (e.g., several milliseconds) of micro-level
physical communications [13], such that the environmental
parameter N can be regarded as a constant within the time
scale of changing the spatial distribution of vehicles. In the
CR-enabled V2I communication situation, the licensed user
shares a number of licensed channels with the N vehicular
nodes. We denote the set of the shared-use channels by M
and let M = |M|. We also remark that the CR-enabled
vehicular network shares some characteristics (such as the
population behavior in competing for limited spectrum
resources, nodes’ mobility) with some other types of CR-
enabled systems such as cognitive radio wireless sensor
networks (CR-WSNs), cognitive heterogeneous networks,
etc., the methodological approach proposed in this paper
can be extended and applied to address the issue of channel
access optimization in those situations. Once the channel
model and the physical-layer transmission are appropriate-
ly characterized based on the targeted situation, we can
map the practical spectrum resource access problem in CR-
enabled networks into proper evolutionary game-theoretic
formulations. In the next subsection, we will elaborate on
the channel and physical-layer model for the focused CR-
enabled vehicular network.

In the slotted fashion, the licensed user first broadcasts
the availability information on the shared channels to the
vehicular nodes over a broadcast channel (i.e., a dedicated
control channel). Then, a vehicle can send a request to the
licensed user through the control channel when it would
like to access one of the shared-use channels. After receiving
the access request, the licensed user allocates a number of
time slots to the vehicle. This allocation of time slots can be
implemented by adopting a TDMA-based MAC mechanism
such as IEEE 802.16d/e standard. In addition, we assume
that each CR vehicular node has two different interfaces [4],
[13], [28], such that they are able to perform data transmis-
sions on the shared-use channels (e.g., CH1, CH2 and CH3
in Fig. 1) provided by the licensed user and a dedicated

channel (e.g., CH0 in Fig. 1), simultaneously. The exclusive
channel is assumed to be reserved for short-range vehicular
communications and controlled by a local provider near
the tagged vehicle, for instance, a road side unit (RSU).
Each vehicular node cannot access a shared-use channel and
the exclusive-use channel when the selected channels are
occupied. The competition occurs among multiple vehicular
nodes to select the same shared-use channel. Following
current literature [16], [34], we assume that each vehicular
node contends to transmit on the same channel i ∈ M in
each time slot with the probability αi ∈ (0, 1) and that in
one time slot a vehicular node can only select one shared
channel even when multiple spectrum opportunities may
be available to it. It is also assumed that the vehicular nodes
can accurately sense the shared channels and implement a
carrier-sense multiple access (CSMA) technique to address
collisions when sharing the same channel (in fact, many
cooperative spectrum sensing schemes proposed in current
literature, such as [14], [17], can be used to achieve accurate
channel sensing by the nodes, which are out of the scope of
this paper). In the competition scenario, we use ni ∈ Z+

0 to
denote the number of vehicular nodes that are contending
for the shared channel i ∈ M, and we have N =

∑M
i=1 ni.

3.2 Channel and physical-layer model

We consider the Nakagami-m distribution to characterize
the channel fading in the cognitive vehicular network [13],
[35], [36]. Let ω1 and ω2 be the average signal-to-noise ratio
(SNR) for the shared channel and the exclusive channel,
respectively. In the physical layer, the vehicular nodes are
considered to adopt the adaptive modulation in order to
enhance data transmissions. To be specific, we assume that
the vehicular wireless transceiver can support L different
modulation rates on the shared channel i, which are de-
noted by Ci = {cl,i, l = 1, 2, . . . , L} where cl−1,i < cl,i
for l = 2, 3, . . . , L. Each cl,i is associated with two SNR
thresholds, Γl−1 and Γl (Γl−1 < Γl). When the received
SNR at the receiver, ω, satisfies ω ∈ [Γl−1,Γl), the onboard
receiver implements the corresponding modulation rate cl,i,
such that it can transmit cl,i packets over the selected shared
channel i in a time slot. At this point, the received SNR
on a channel can be divided into L non-overlapping SNR
intervals, i.e., {[Γ0,Γ1) , [Γ1,Γ2) , . . . , [ΓL−1,ΓL)} where we
set Γ0 = 0 and ΓL = +∞. Additionally, we assume that
each vehicular node is able to transmit c′l packets on the
exclusive channel per time slot if the received SNR on this
channel falls within the l-th SNR interval [Γl−1,Γl).

Let κ be an indicator, where κ = 1 is for the case of
data transmissions on the shared channel, while κ = 2 is
for the exclusive channel. According to the Nakagami-m
distribution, we can have

Prob {ωκ ≤ x} =
γ
(
m, m

ωκ
x
)

Γ (m)
(1)

for κ = 1, 2, where Γ(m) is a Gamma function char-
acterized by the parameter m, Γ(m) =

∫∞
0 e−ssm−1ds,

and γ
(
m, m

ωκ
x
)

is a lower incomplete Gamma function,

γ
(
m, m

ωκ
x
)
=
∫ m

ωκ
x

0 e−ssm−1ds.
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Denote by ProbSNR {κ, l} the probability of the received
SNR falling within [Γl−1,Γl). Namely, ProbSNR {κ, l} =
Prob {ωκ ∈ [Γl−1,Γl)} can be obtained from (1) as follows

ProbSNR {κ, l} =
γ
(
m, m

ωκ
Γl

)
− γ

(
m, m

ωκ
Γl−1

)
Γ (m)

(2)

for κ = 1, 2. With ωκ ∈ [Γl−1,Γl) and (2), we can also
calculate the average packet error rate (PER) by [13], [37]

p(κ, l)

=
1

ProbSNR {κ, l}
al

Γ(m)

(
m

ωκ

)m γ (m, blΓl)− γ (m, blΓl−1)

(bl)
m

(3)

where al and bl are two tunable parameters that can be
evaluated by fitting the theoretical equation to the exact
PER measurement [13], [37]. By using an automatic repeat
request (ARQ) scheme, the probability of success in trans-
mitting cl,i packets over the shared channel i in mode l
(1 ≤ l ≤ L) in a time slot can be determined as

Prob1 {cl,i, i} =ProbSNR {1, l} (1− p(1, l))
cl,i . (4)

Similarly, for the case of the exclusive channel, the probabil-
ity can be expressed as

Prob2 {c′l} =ProbSNR {2, l} (1− p(2, l))
c′l . (5)

Considering that each vehicular node can use two radio
interfaces to transmit packets, the average number of pack-
ets that can be successfully transmitted by a vehicular node
contending to access the shared channel i is expressed by

ri(ni) =
C1

ni
αi(1− αi)

ni−1

ni

×
(

L∑
l=1

cl,iProb1 {cl,i, i}+
L∑

l′=1

c′l′Prob2 {c′l′}
)
,

(6)

where the term 1
ni

represents the probability of a vehicular
node successfully contending for transmission on the chan-
nel i when considering a uniformly random competition
among ni vehicular nodes, and C1

ni
αi (1− αi)

ni−1 denotes
the probability of no transmissions by the other ni−1 nodes
contending for the same channel i except for the successful
competitor.

3.3 Utility function for hybrid channel access
Based on (6), we formulate a cost-type utility function to
quantify the average delay experienced by a vehicular node
in the group of ni nodes, which can indicate the congestion
degree of their accessing channel i

ϕi(ni) =
C

ri(ni)
, (7)

where C > 0 is a positive parameter that can be specified by
the channel in order to quantify the magnitude of the chan-
nel congestion. For the sake of example here, we can simply
set C = 1. Recalling that ri(ni) represents the average num-
ber of packets expected to be successfully transmitted per
time slot, ϕi(ni) can denote the average transmission delay
per packet. Based on (7) we can quantify the communication

performance of vehicular nodes: if many vehicular nodes
contend for the same channel i, i.e., ni is large, i becomes
congested, which can incur a high transmission delay, i.e., a
large cost utility ϕi(ni).

4 EVOLUTIONARY GAME FORMULATION

4.1 Game Model
As shown in much existing literature such as [18], [28],
evolutionary game theory can provide a refined Nash e-
quilibrium with guaranteed evolutionary stability, i.e., evo-
lutionarily stable strategy, and explicitly characterize the
strategy-learning and adaptation of individuals, when com-
pared to other additional non-cooperative game theories.
It presents a powerful framework for modeling the dy-
namics of evolving strategies in a population, which has
been widely applied in not only biology but also other
engineering fields. Here, we consider the vehicular nodes
are driven by their own interests, i.e., with the goal of mini-
mizing their experienced cost utility, to independently make
channel access decisions. Therefore, to take into account
the bounded rationality of the vehicular nodes and capture
the dynamics of interactions among them, we also resort
to evolutionary game theory. To be specific, we model the
access strategy adaptation of self-interest-driven vehicular
nodes in a cognitive vehicular network as an evolutionary
game, which formally consists of the following components:

• Players: In the evolutionary game, a player is a
vehicular node that aims to minimize its experienced
cost utility by adapting its decision on accessing a
shared channel. Hence, the set of the players is N .

• Strategy: A strategy of any player is the decision to
access a shared channel in a competitive manner. At
this point, the strategy set of each player can be M.

• Population: A group of players that are sharing the
same channel constitute a population. We also denote
by i ∈ M the index of a population associated with
the strategy i.

• Population share: The population share is referred
to the proportion of the players in the popula-
tion. Specifically, the population share is defined as
si = ni/N . Noting N =

∑M
i=1 ni and ni ∈ Z+

0 , we
equivalently have 1 =

∑M
i=1 si and ∀si ∈ [0, 1].

• Population state: We represent the state of the popu-
lations as the collection of all the population shares,
i.e., s = [s1, s2, . . . , sM ]

T.
• Expected payoff: The expected payoff of a player

choosing the shared channel i can be the cost utility
associated with this channel. Given a population
state s ∈ [0, 1]M , with equation (7) and the notation
of the population share si above we rearrange the
cost-type utility as follows

fi(si, s) = ϕi (Nsi) . (8)

We remark that fi(si, s) is (i) a monotonously non-
decreasing mapping with respect to the population
share si, i.e., fi : [0, 1] → R≥0, which is also (ii)
a twice continuously differentiable and (iii) convex
function of si. The proof of these basic properties
of fi(si, s) is given in the on-line supplementary
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material. It can be seen that the expected payoff is
also affected by the other players’ strategies besides
si since 1 =

∑M
i=1 si.

Subsequently, for a better understanding, we present the
definition of a Nash equilibrium in the game formulation.

Definition 1: A population share profile, i.e., the population
state sNE, is a Nash equilibrium in the evolutionary game
formulation if for all the nonzero population shares si > 0,
i ∈ M, the corresponding cost-type payoff satisfies fi(si, sNE) ≤
fi′(si′ , s

NE) for ∀i′ ∈ M.
From Definition 1, we can see in the Nash equilibrium

state:

• Remark 1: Any utilized shared channel i with a
nonzero population share si > 0 must has an identi-
cal cost utility. Thus, the expected payoff of a player
accessing the channel is equal to each other’s, i.e.,
equal to the average level.

• Remark 2: The rest channels with a zero population
share si′ = 0 must provide a larger or equal cost
utility.

Remark 1 and Remark 2 are due to the fact that none of the
players would like to unilaterally change its channel access
when they arrive at the Nash equilibrium.

4.2 Analysis of Nash equilibrium
A Nash equilibrium is a quite important solution to a
noncooperative game. For the game formulated above, we
have the following theorem to describe its basic properties
related to the Nash equilibrium.

Theorem 1. sNE =
[
sNE
1 , sNE

2 , . . . , sNE
M

]T
is a Nash equilibri-

um if and only if it is characterized as the global minimizer of the
following model

sNE ∈ argmin
s∈[0,1]M

{
M∑
i=1

∫ si

0
fi(x, s)dx, 1 =

M∑
i=1

si

}
(9)

The proof of Theorem 1 is available in the online supple-
mental material.

Generally, the Nash equilibrium does not necessarily op-
timize the global performance of the overall game-theoretic
system, as stated in existing literature [8], [9], [10], which is
widely known as the inefficiency of the Nash equilibrium.
To investigate the quality of the Nash equilibrium existing in
the proposed game, we introduce an aggregate cost utility,
called the social cost, as the global performance metric

G(s) =
M∑
i=1

Nsifi(si, s) =
M∑
i=1

CNsi
αi(1− αi)Nsi−1ri

, (10)

where ri =
∑L

l=1 cl,iProb1 {cl,i, i} +
∑L

l′=1 c
′
l′Prob2 {c′l′}.

G(s) is the total sum of all the players’ cost, so it is also
a convex function with respect to each si. Subsequently,
a feasible optimal strategy profile, denoted by s∗, can be
defined as the socially optimal solution that minimizes the
social cost over all the feasible strategies, i.e.,

s∗ ∈ argmin
s∈[0,1]M

{
M∑
i=1

Nsifi(si, s), 1 =
M∑
i=1

si

}
(11)

Logically, a measure of the quality of the Nash e-
quilibrium solution sNE can be formulated as the ratio
between the social cost of the equilibrium solution sNE

and that of the centrally designed optimal solution s∗,
θ = G

(
sNE

)
/G (s∗), which is known as the price of anarchy

in economics and game theory [38]. Based on the definition,
we derive some results on θ.

Lemma 1. Suppose that sNE is the Nash equilibrium of the game
formulated in (9). For any feasible solution of (9), the following
inequality always holds

M∑
i=1

sNE
i fi

(
sNE
i , sNE

)
≤

M∑
i=1

s̃ifi
(
sNE
i , sNE

)
. (12)

Lemma 2. Suppose that any two constants λ and µ satisfy
µ ∈ (0, 1) and λµ ≥ 1

4 max
{
(1− αi)

−N , i = 1, 2, . . . ,M
}

.
The following inequality always holds for any strategy i and two
population shares si, s′i ∈ [0, 1]

s′ifi(si, s) ≤ λs′ifi(s
′
i, s

′) + µsifi(si, s), (13)

where s′ is the population state associated with s′i.

The proofs of Lemmas 1 and 2 are given in the online
supplementary material. Now, with Lemmas 1 and 2, we
can derive the theoretical bounds of the price of anarchy.

Theorem 2. Suppose that any two constants λ and µ satisfy
µ ∈ (0, 1) and λµ ≥ 1

4 max
{
(1− αi)

−N , i = 1, 2, . . . ,M
}

. If
the feasible sNE is the Nash equilibrium of the game formulation
(9) and s∗ is an optimal solution with respect to the global
optimization problem (11), then the price of anarchy in the game
(9) is bounded as 1 ≤ θ ≤ λ

1−µ .

The proof of Theorem 2 is given in the online sup-
plementary material. From Theorem 2, it is seen that the
price of anarchy in the Nash equilibrium is related to the
competition among vehicular nodes. The larger αi is, the
fiercer the competition becomes. Increasing the competition,
i.e., αi, will increase the parameter λ, which leads to a higher
upper bound of the price of anarchy.

5 EVOLUTIONARY DYNAMICS OF HYBRID CHAN-
NEL ACCESS WITH DYNAMIC CONGESTION PRICING

5.1 Dynamic Congestion Pricing
Let qi(si, s) ∈ R≥0 be the toll a vehicular node has to pay
for accessing the shared channel i given that the population
share associated with i is si and the current population state
is s. Specifically, we refer to the formulation of the marginal
cost taxes first proposed by Pigou [11] to devise qi(si, s),
which can be expressed as qi(si, s) = Nsi

dfi(si,s)
dNsi

=

si
dfi(si,s)

dsi
:

qi(si, s) =
−CNsi ln(1− αi)

αi(1− αi)Nsi−1ri
. (14)

The marginal cost pricing is believed to be a powerful
approach to reducing the inefficiency of the Nash equilib-
rium [38], the underlying idea of which is to charge each
player for an additional cost incurred by its presence in the
spectrum competition. Now, with the marginal cost pricing
qi(si, s), any vehicular node in the i-th population must
suffer the total cost of fi(si, s) + qi(si, s). At this point,
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we can modify the cost utility experienced by a player in
the formulated game to πi(si, s) = fi(si, s) + qi(si, s) for
∀i ∈ M. Obviously, qi(si, s) is also twice continuously
differentiable with respect to si. We can further derive
f ′′′i (si, s) = −CN3 ln3(1−αi)

αi(1−αi)Nsi−1ri
> 0 under αi ∈ (0, 1). Noting

q′′i (si, s) = 2f ′′i (si, s)+sif
′′′
i (si, s) > 0, we see that qi(si, s)

is strictly convex with respect to si. This also indicates the
strict convexity of the total cost utility of each individual
player, πi(si, s). Thus, similar to (9), the Nash equilibrium
of the evolutionary game with the marginal pricing, zNE,
can be specified as the minimizer of the following convex
optimization model

zNE ∈ argmin
s∈[0,1]M

{
M∑
i=1

∫ si

0
πi(x, s)dx, 1 =

M∑
i=1

si

}
(15)

Furthermore, we establish the connection between zNE

and the socially optimal solution of (11), s∗.

Theorem 3. A strategy profile, zNE, is the Nash equilibrium
of the evolutionary game with the dynamic congestion pricing as
represented by (15) if and only if it is the socially optimal solution
of the model (11). Meanwhile, given that s∗ is socially optimal
with respect to (11), s∗ must be the Nash equilibrium solution of
(15) with imposing the channel congestion prices qi(s∗i , s

∗) for
∀i ∈ M.

The proof of Theorem 3 is given in the online supplemen-
tary material. Furthermore, to analyze the evolutionary sta-
bility of the Nash equilibrium strategy, we refer to the con-
cept of evolutionary stable strategy (ESS) [6], [7]. Suppose
that a small group of the players, the proportion of which
is denoted by χ ∈ (0, 1), change their currently adopted
strategies s to other alternatives. The profile of these mu-
tants’ new strategies can be denoted by sχ ∈ [0, 1]M and
1 =

∑M
i=1 si,χ where si,χ is the ratio of the mutants that

switch to access the shared channel i to the total mutants. In
this sense, the new population state after the mutation can
be expressed as (1− χ)s+ χsχ. Let π(s) be the the average
cost utility under s. The ESS of the game model (15) can be
mathematically defined as follows.

Definition 2 [7]: sESS is an ESS of (15) if for any sχ ̸=
sESS, there is a certain χ̃ ∈ (0, 1) such that π

(
sESS

)
<

π
(
(1− χ)sESS + χsχ

)
is always held for ∀χ ∈ (0, χ̃).

The ESS represents an equilibrium refinement of the
Nash equilibrium strategy that is able to prevent some
mutant strategies from invading if the mutant strategies
are rare at the initialization of the population evolution.
Now, we can establish the relationship between the Nash
equilibrium of the game (15) and the ESS as follows.

Theorem 4. The Nash equilibrium strategy zNE obtained from
(15) must also be the evolutionary stable strategy sESS.

The proof of Theorem 4 is available in the online supple-
mentary material.

Besides, by applying Theorems 3 and 4, we can derive
that the socially optimal solution to (11) is also an ESS.

5.2 Evolutionary Dynamics of Strategy Adaptation

Let t ∈ R≥0 be the time index where t = 0 indicates the
initialization of the evolutionary game. Without ambiguity,

we can slightly modify the notations si and s to si(t) and
s(t), which express the population share and the population
state at time t, respectively. For simplicity, we introduce the
following (M − 1)-dimensional standard simplex ∆M−1:

∆M−1 =

{
[s1, s2, . . . , sM ]

T

∣∣∣∣∣∀si ∈ [0, 1] and
M∑
i=1

si = 1

}
(16)

to represent the constraints of the model (15). Denoting
by π(s(t)) the average cost of the overall population at
time t, π(s(t)) =

∑M
i=1 si(t)πi(si(t), s(t)), we can use the

replicator dynamics [7] to model the evolutionary game
with the dynamic channel pricing corresponding to (15),
which is defined on the simplex ∆M−1 as follows:

dsi(t)

dt
= σsi(t) [π(s(t))− πi(si(t), s(t))] (17)

with the initial population state s(0) ∈ ∆M−1, for ∀i ∈ M,
where σ is the learning rate that controls the frequency of the
strategy adaptation for channel accessing. For σ, we assume

0 < σ <
1

maxs∈∆M−1{πi(si, s)}
. (18)

In fact, such a positive σ always exists because of the
continuity of the cost utility function πi(si, s) with respect
to si and the boundedness of si for all i ∈ M.

From (17), we can see that a positive population share
si(t) > 0 will be decreased with a negative growth rate
s′i(t) < 0 if the corresponding cost is larger than the average
cost, i.e., πi(si(t), s(t)) > π(s(t)), while it will increase if
s′i(t) > 0. When si(t) = 0, it will stop evolving since its
growth rate is always zero, i.e., s′i(t) = 0. The evolutionary
equilibria (EE) of the dynamical system (17) may be con-
sidered as the solution of the system. The EE are usually
defined as the fixed points of the dynamical system, i.e., the
points satisfying dsi(t)/dt = 0 ∀si(t) ∈ s(t). At the fixed
points, none of the population shares change any longer
and the fairness of spectrum allocation among the vehicular
nodes can also be achieved. We let the set of the EE of
(17) be UEE, UEE =

{
s(t) ∈ ∆M−1 |dsi(t)/dt = 0 ∀i ∈ M

}
.

Unfortunately, not all of the EE are stable. In other words,
the unstable points, if existing in UEE, are not the ESS. Thus,
they must not be the Nash equilibrium of the model (15),
i.e., not the socially optimal solution to (11), according to
Theorems 3 and 4. Formally, we define a set ŨEE by ŨEE =
{s(t) ∈ UEE |∃i si(t) = 0 and πi (si(t), s(t)) < π (s(t))}. It
is obvious that all the points in ŨEE are neither stable
due to the fact that any small perturbation will make
the system deviate from the equilibrium state, nor the
Nash equilibrium according to Definition 1. Denote the
set of the socially optimal solutions to (11) by USO, i.e.,
USO = argmins∈∆M−1{G(s)}. We connect the EE of the
replicator dynamics (17) with the socially optimal solution
to (11) by the following theorem:

Theorem 5. USO = UEE\ŨEE always holds for (17).

The proof of Theorem 5 is available in the online supple-
mentary material. By following Theorem 5, we further have
the following results:
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• Remark 3:
∣∣∣UEE\ŨEE

∣∣∣ = 1, because the strict convex-
ity of (11) guarantees the existence of a unique global
optimal solution in its feasible region, i.e., |USO| = 1.

• Remark 4: USO is an invariant manifold of ∆M−1, as
UEE\ŨEE are invariant manifolds.

• Remark 5: UEE\ŨEE is the set of the ESS of (17)
according to Theorem 4.

Additionally, we show that the EE in UEE\ŨEE is asymp-
totically stable as follows.

Theorem 6. The socially optimal solution s∗ ∈ USO =
UEE\ŨEE of the model (11) is asymptotically stable and there
exists a sufficiently small ϵ such that for all 0 < ϵ < ϵ, from
any given initial point s(0) ∈ ∆M−1 which satisfies s(0) ̸= s∗

and ∥s(0)− s∗∥ < ϵ where ∥ · ∥ denotes the Euclidean distance
operator, the replicator dynamics (17) can converge to s∗.

The proof of Theorem 6 is available in the online supple-
mentary material.

5.3 Discretized Evolutionary Dynamics with Delayed
Pricing
To practically implement the strategy adaptation with the
replicator dynamics formulated above, we further consider
to discretize (17) by introducing k ∈ Z+

0 as the index of
each channel access decision time slot (i.e., each strategy
adaptation epoch). Thus, it is assumed that the game of com-
petitively accessing hybrid channels is repeatedly played by
vehicular nodes at each epoch k on an infinite time horizon
(See Fig. 1). At each k, vehicular nodes can access their pre-
ferred shared channels, which incurs a population distribu-
tion of the entire nodes, s(k) = [s1(k), . . . , sM (k)]

T. Then,
these vehicular nodes observe the cost-type payoff relevant
to their decisions, including the actual channel performance
cost {fi(si(k), s(k)), ∀i ∈ M} and the additionally imposed
channel congestion prices {qi(si(k), s(k)),∀i ∈ M}. Using
the cost information, they can adapt their access decisions at
the subsequent epoch k+1. Then, the discretized realization
of (17) can be expressed as

si(k + 1) = si(k) + σ(k)si(k) [π(s(k))− πi(si(k), s(k))] .
(19)

In (19), two types of the learning rate are
investigated, one of which corresponds to the time-
dependent learning rate and the other the constant
rate. For the first case, we denote the set of a
series of the learning rates at each epoch by Θ1 ={
σ(k) = σθ(k) ∈ R>0

∣∣∑∞
k=0 θ(k) = ∞,

∑∞
k=0 θ

2(k) <∞
}

.
In this case, the learning rate σ(k) is vanishing over
iterations k. In contrast, for the constant rate, we denote
Θ2 = {σ(k) = σθ(k) ∈ R>0 |θ(k) = θ ∀k } where θ is a
small positive real number.

On the other hand, let W ∈ Z+ be the size of the
time period for updating the channel congestion prices and
Wk = k −W ×

⌊
k
W

⌋
be the difference between the current

epoch of strategy adaptation and that of congestion pricing,
where ⌊·⌋ is the floor function. We delay the marginal cost
pricing formula (14) by Wk and modify the total cost utility
πi(si(k), s(k)) = fi(si(k), s(k)) + qi (si(k), s(k)) to

πWk
i (si(k), s(k)) =fi(si(k), s(k))

+ qi (si (k −Wk) , s (k −Wk)) .
(20)

Correspondingly, the average payoff π(s(k)) is changed to
πWk(s(k)) =

∑M
i=1 si(k)π

Wk
i (si(k), s(k)).

Based on (17), the discretized iterative equation of the
replicator dynamics with delayed dynamic channel conges-
tion pricing for k ∈ Z+

0 can be represented by

si(k+1) = si(k)+σ(k)si(k)
[
πWk(s(k))− πWk

i (si(k), s(k))
]

(21)
with the initialization s(0) ∈ (0, 1)M and the learning rate
σ(k) ∈ Θ1 or σ(k) ∈ Θ2.

5.4 Convergence Analysis

With the pricing delay Wk, the discretized evolutionary
dynamics (21) may be different from that of the original
system (19). To shed light on the effect of Wk on the dis-
cretized evolutionary dynamics, we first provide some basic
properties and then establish the connection between the
discretized evolutionary dynamics with the delayed pricing
and the original one without a delay in pricing.

Lemma 3. There always exists a positive constant Q ∈ R>0

such that max {|∂qi(si, s)/∂sl| , ∀i, l ∈ M} ≤ Q holds.

Lemma 4. Given a W ∈ Z+, Wk ≤W always holds.

Lemma 5. Let σsi(k)
[
πWk(s(k))− πWk

i (si(k), s(k))
]

=

∆si(k) for all i ∈ M and then |∆si(k)| ≤ si(k) always holds.

The proofs of Lemmas 3-5 are available in the online
supplementary material. Based on these lemmas, we show
that the difference between the pricing mechanisms with
and without a delay is bounded and the bound is in the
same order of the adopted learning rate.

Theorem 7. There always exists a positive constant ϑ ∈ R>0

such that for all i ∈ M the following holds for either σ(k) ∈ Θ1

or σ(k) ∈ Θ2

|qi (si(k), s(k))− qi (si(k −Wk), s(k −Wk))|

≤ ϑ
W−1∑
τ=0

θ(k − τ − 1).
(22)

Proof: For simplicity, we still use the notation of
∆si(k) in Lemma 5 and also define a column vector of
∆si(k) by ∆s(k) = [∆s1(k), . . . ,∆sM (k)]

T. Based on (21)
and noticing the definition of the learning rate σ(k) =
σθ(k), we can directly yield qi (si(k + 1), s(k + 1)) =
qi (si(k) + θ(k)∆si(k), s(k) + θ(k)∆s(k)). Regarding the s-
mall parameter θ(k) as a scalar variable and the marginal
cost utility as the function of θ(k), i.e., letting φi(ξ) =
qi (si(k) + ξ∆si(k), s(k) + ξ∆s(k)), we can obtain the lin-
ear expansion of the marginal cost φi(ξ) at the zero point
ξ = 0 by using Taylor’s theorem as follows

φi(ξ) = φi(0) + φ′
i(ξ̃)ξ, (23)

where ξ̃ is some real number between 0 and ξ. In addition,
the first-order derivative of φi(ξ) at ξ̃ can be expressed as
φ′
i(ξ̃) =

∑M
l=1

(
∂qi(s

ξ̃
i , s

ξ̃)/∂sl
)
∆sl(k), where we denote
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sξ̃i = si(k) + ξ̃∆si(k) and sξ̃ = s(k) + ξ̃∆s(k). Thus,
according to Lemmas 3 and 5, we can see∣∣∣φ′

i(ξ̃)
∣∣∣ ≤ M∑

l=1

∣∣∣∣∣∂qi(sξ̃i , sξ̃)∂sl

∣∣∣∣∣× |∆sl(k)| ≤
M∑
l=1

Qsl(k) = Q.

(24)
(24) indicates that there must exist some real

numbers ηi(k), satisfying |ηi(k)| ≤ Q, such that
qi (si(k + 1), s(k + 1)) = qi (si(k), s(k)) + ηi(k)θ(k). That
is, |qi (si(k + 1), s(k + 1))− qi (si(k), s(k))| ≤ Qθ(k). Us-
ing this result and Lemma 4, we can reach

|qi (si(k), s(k))− qi (si(k −Wk), s(k −Wk))|

=

∣∣∣∣∣
Wk−1∑
τ=0

[
qi (si(k − τ), s(k − τ))

− qi (si(k − τ − 1), s(k − τ − 1))

]∣∣∣∣∣
≤

W−1∑
τ=0

∣∣∣∣∣
[
qi (si(k − τ), s(k − τ))

− qi (si(k − τ − 1), s(k − τ − 1))

]∣∣∣∣∣
≤ Q

W−1∑
τ=0

θ(k − τ − 1).

(25)

By selecting ϑ as Q, the proof is completed.
Following Theorem 7, we can show the convergence of

the discretized evolutionary dynamics with delayed pricing.

Theorem 8. Suppose that the series
{
s(k) ∀k ∈ Z+

≥Wk

}
is

generated from the discretized evolutionary dynamics with the
delayed pricing (21). Then, we can have

si(k + 1) =si(k)

+σ(k)si(k) [π(s(k))− πi(si(k), s(k))] +O
(
θ2(k)

)
(26)

for either σ(k) ∈ Θ1 or σ(k) ∈ Θ2.

Proof: Using the notation of ∆si(k) defined in Lem-
ma 5 and defining πWk

i (si(k), s(k)) − πi(si(k), s(k)) =
qi(si(k −Wk), s(k −Wk)) − qi(si(k), s(k)) = ∆qi(k|Wk),
we can rearrange (21) as follows

si(k + 1) = si(k)

+ σθ(k)si(k)
[
πWk(s(k))− πWk

i (si(k), s(k))
]

+ σθ(k)si(k) [π(s(k))− πi(si(k), s(k))]

− σθ(k)si(k) [π(s(k))− πi(si(k), s(k))]

= si(k) + σθ(k)si(k) [π(s(k))− πi(si(k), s(k))]

+ σθ(k)si(k)

{
M∑
l=1

sl(k)∆ql(k|Wk)−∆qi(k|Wk)

}
.

(27)

Next, based on Theorem 7 and noticing
∑M

l=1 sl(k) = 1 and
∀si(k) ∈ [0, 1], we can see∣∣∣∣∣σθ(k)si(k)

{
M∑
l=1

sl(k)∆ql(k|Wk)−∆qi(k|Wk)

}∣∣∣∣∣
≤ σθ(k)si(k)

{
M∑
l=1

sl(k) |∆ql(k|Wk)|+ |∆qi(k|Wk)|
}

≤ 2σϑ
W−1∑
τ=0

θ(k)θ(k − τ − 1),

(28)

which indicates that σθ(k)si(k){
∑M

l=1 sl(k)∆ql(k|Wk) −
∆qi(k|Wk)} = O

(
θ2(k)

)
. Thus, we complete the proof.

Theorem 8 reveals that the difference between the pro-
posed evolutionary dynamics with the delayed pricing and
that without a delay in the channel pricing is also bounded
and the bound is in the same order of a square of the
adopted learning rate, i.e., the order of θ2(k). Moreover,
recalling the definitions of Θ1 and Θ2, we can also see

• Remark 6: When σ(k) ∈ Θ1, the evolutionary dy-
namics with delayed pricing (21) can converge to the
phase trajectory of (19) that is without any delay
in the channel congestion prices as k → ∞. This
is because a vanishing learning rate can lead to
O
(
θ2(k)

)
→ 0 as k → ∞.

• Remark 7: When σ(k) ∈ Θ2, θ(k) is speci-
fied as a constant θ. In this case, we can see
|σθ(k)si(k){

∑M
l=1 sl(k)∆ql(k|Wk)−∆qi(k|Wk)}| ≤

2Wσϑθ2. This means that the phase trajectory of (21)
is bounded near that of (19), and the bound of the
difference between these two phase trajectories is in
the order of θ2.

Furthermore, to investigate the steady performance of
the discretized evolutionary dynamics (21) with σ(k) ∈ Θ1

and σ(k) ∈ Θ2, respectively, we illustrate anther mathemat-
ical property of πi(si, s) in the following lemma.

Lemma 6. πi(si, s) is Lipschitz continuous with respect to si
(or s) over ∆M−1 ∀i ∈ M.

Now, we can obtain the following theorems.

Theorem 9. For σ(k) ∈ Θ1, the series {s(k),∀k ∈ Z+
≥Wk

}
generated from (21) can asymptotically converge to the socially
optimal point s∗ of the model (11) with an initial interior point
s(0) ∈ (0, 1)M . That is, limk→∞ ∥s(k)− s∗∥ = 0 from the
interior region of ∆M−1.

Proof: In fact, the Lipschitz continuity of the cost
utility function πi(si, s) illustrated in Lemma 6 can ensure
that the original ordinary differential equation (17) has a
unique solution for any initial point s(0), i.e., depending
continuously on s(0). As shown in Theorem 6, given an
interior point of the simplex ∆M−1 as the initial point, (17)
can converge to s∗. Here, we follow the analysis logic in [39]
to establish an appropriate continuous phase trajectory s(t)
t ∈ R≥0 from s(k) by using linear interpolation, and further
show that its asymptotic convergence to the socially optimal
solution s∗ similar to the behavior of (17).

Denote a series of time instants by {t(0) = 0, t(k) =∑k−1
τ=0 θ(τ), k ≤ 1}. As given σ(k) ∈ Θ1, we have t(k) → ∞

and θ(k) = t(k + 1) − t(k) → 0 as k → ∞. We also let
∆t(k) = [t(k), t(k+1)] for all k. Thus, we can set the points
s(t(k)) = s(k) for all k and define s(t) for t ∈ ∆t(k) with
linear interpolation on the interval ∆t(k) as follows

s(t) = s(k) + (s(k + 1)− s(k))
t− t(k)

t(k + 1)− t(k)
, t ∈ ∆t(k).

(29)
Given any positive real number t0 ∈ R>0 and let st0(t) =[
st01 (t), . . . , st0M (t)

]T
for t ≥ t0 be the unique solution to (17)
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TABLE 1
Parameters for adaptive transmission over different channels

Parameters Values
The SNR thresholds Γl {0, 8, 11, 15, 25, 36,+∞} (dB)
Data rates for κ = 1 {3, 4.5, 6, 12, 18, 27} (Mbps)
Data rates for κ = 2 {6, 9, 12, 24, 36, 54} (Mbps)
Parameters al, gl {1, 0.5, 0.4, 0.3, 0.2, 0.1}

starting at time instant t0, i.e.,

dst0i (t)

dt
= σst0i (t)

[
M∑
l=1

st0l (t)πl
(
st0l (t), st0(t)

)
− st0i (t)

]
(30)

with st0(t0) = s(t0) and t ≥ t0.
Combining Theorem 8 and the fact O

(
θ2(k)

)
→ 0 as

k → ∞ when σ(k) ∈ Θ1, and according to [39] (See Lemma
1 in Section 2 of [39]), we can see

lim
t0→∞

sup
t∈[t0,t0+T ]

∥∥s(t)− st0(t)
∥∥ = 0 (31)

for any given T > 0. This means that when k → ∞, the
discretized trajectory of (21) can asymptotically converge to
that of (30). Notice that (30) and (17) follow the same update
rule. In other words, the limiting behavior of (21) is similar
to (17). Based on Theorem 6, we can conclude that (21), like
(17), can asymptotically converge to s∗ ∈ USO.

In contrast, with σ(k) ∈ Θ2, we have the following
theorem.

Theorem 10. For σ(k) ∈ Θ2, the series {s(k), ∀k ∈ Z+
≥Wk

}
generated from (21) can asymptotically converge to a neighbor-
hood of s∗ ∈ USO of the model (11) with an initial interior point
s(0) ∈ (0, 1)M . That is, limk→∞ ∥s(k)− s∗∥ = O(θ) from the
interior region of ∆M−1.

Proof: Notice that a constant σ(k) = σθ is adopted
here for all k. This theorem can also be proven by using the
same analysis logic as in Theorem 9 and by referring to [39]
(See Theorem 3 in Section 9 of [39]).

Theorems 9 and 10 reveals a trade-off to specify a
learning rate for the discretized evolutionary dynamics. A
constant learning rate-based evolutionary dynamics may be
better adaptive to a dynamic environment at the price of
sacrificing the optimality of the steady state. Theoretically,
a vanishing learning rate can guarantee the convergence
of the discretized evolutionary dynamics to the socially
optimal state, while it may be unsuitable for a dynamic
situation in reality, since the convergence will slow down
when the learning rate is approaching zero.

6 PERFORMANCE EVALUATION

6.1 Parameter Setting
We provide an implementation framework of the channel
access optimization based on the proposed evolutionary
dynamics with the delayed channel pricing in a practical
scenario as is illustrated in Fig. 2. We consider a cognitive
vehicular network in a service area with M = 3 radio chan-
nels (M = {1, 2, 3}) commonly shared by a licensed user
and with one exclusive-use channel. The fading parameter
m is set to m = 1.0 for the shared channels while m = 1.5
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Fig. 2. A schematic diagram for implementation of the proposed evolu-
tionary dynamics with the delayed dynamic pricing.

for the exclusive-use channel. The transmission probability
of a vehicular node over each shared-use channel in a time
slot is set as α1 = 0.02, α1 = 0.03, and α1 = 0.05. The
channel qualities are given as ω1 ∈ {11, 15, 19} (dB) while
ω2 = 12dB. Each packet size is set to 100 Bytes and the
duration of each time slot is 20 ms. The average packet
arrival rate is assumed to be C = 1.0 (packet per time
slot). According to [37], the modulation of the DSRC-based
exclusive-use channel can be based on different protocols
such as BPSK, QPSK, 16-QAM, 64-QAM under the different
coding rates 1/2, 2/3, 3/4. [37] also shows that the parame-
ter bl involved in equation (3) can be further approximated
by bl = m/ωκ + gl where gl is the fitting parameter in
mode l. Accordingly, in our experiments, we specify the
transmission rates of channels under different modes as well
as the SNR thresholds associated with each transmission
mode in Table 1. It is worth pointing out that the parameter
setting used here is for the sake of demonstration and our
proposed model can also be applied in other scenarios.

6.2 Numerical Results
6.2.1 Evolutionary dynamics without channel pricing
We numerically study the evolutionary dynamics without a
pricing mechanism, for which we fix the population size
N at N = 60 and the population state is initialized as
s(0) = [0.5, 0.2, 0.3]T. We select the dynamic learning rate
as θ(k) = 100/(100 + k) for ∀k and the constant learning
rate as θ = 1. The total epoch number is set to 5000. Fig.
3 shows the evolution of the population state s(k) under
the two learning rates, while Fig. 4 shows the evolution of
the cost-type payoff, fi(si, s), of the vehicular populations
accessing different channels. From this two figures, we can
observe that the vehicular populations can converge to the
Nash equilibrium state where no vehicular node has the
incentive to unilaterally adjust its access strategy as the pay-
off obtained from each utilized channel is identical. We can
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Fig. 3. Evolution of population shares without a channel congestion
pricing.

Fig. 4. Evolution of populations’ payoffs without a channel congestion
pricing.

also see that the evolutionary dynamics with the dynamic
learning rate vanishing over time converges more slowly
than that with the constant learning rate. The reason is that
the learning rate is shrinking along with the evolution and
the frequency of access strategy adaptation of the vehicular
nodes controlled by the learning rate becomes small after a
certain number of decision-making iterations.

Furthermore, we examine the network-wide perfor-
mance of the Nash equilibrium solution and compare it
with the ideal socially optimal performance, as shown in
Fig. 5. As expected, due to the inherent inefficiency of the
Nash equilibrium, it cannot minimize the social cost utility
of the vehicular nodes and there exists a gap between the
performance of the Nash equilibrium-based solution and
the optimal performance. Fig. 6 shows the direction field
and phase trajectory of the evolutionary dynamics with
the dynamic learning rate as well as its Nash equilibrium
and the optimal solution in the plane of the correspond-
ing 2-dimensional simplex ∆2. This figure also confirms
that without a pricing mechanism the Nash equilibrium
point does not coincide with the socially optimal state. In
Fig. 6, each arrow indicates the direction of evolution of

Fig. 5. Evolution of social cost without a channel congestion pricing.
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Fig. 6. Evolutionary stability without a channel congestion pricing.

the vehicular population, and its color shade indicates the
growth rate of the population shares. From Fig. 6, we can
see that, as confirmed by our derived theorem, the Nash
equilibrium, i.e., an interior evolutionary equilibrium, is an
evolutionary stable strategy, whose asymptotic stability can
also be guaranteed in the interior region of the simplex (i.e.,
all the potential phase trajectories in the interior simplex
space will evolve to the Nash equilibrium, as indicated by
the direction field in Fig. 6).

6.2.2 Evolutionary dynamics with delayed channel pricing
We investigate the evolutionary dynamics with the pro-
posed delayed dynamic channel congestion pricing mech-
anism. In this experiment, we set the epoch size, W , of
adjusting the channel prices asW = 200, and different types
of the learning rates are set as θ(k) = 10/(100 + k) for ∀k
and θ = 0.1, respectively. The evolutions of the population
shares, the population payoff and the channel prices are
illustrated in Figs. 7, 8 and 9, respectively. From these
figures, we can find that the introduction of a finite delay
W into the channel pricing affects the convergence speed of
the evolutionary dynamics. However, as expected, the ve-
hicular nodes can still achieve an evolutionary equilibrium
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Fig. 7. Evolution of population shares with a delayed pricing.

Fig. 8. Evolution of populations’ payoffs with a delayed pricing.

Fig. 9. Evolution of channel prices with a delay W = 200.

as shown in Fig. 7, which is also the Nash equilibrium of the
evolutionary game, since all the cost utilities experienced by
the different vehicular nodes are equal to the average level
(See Fig. 8). From Fig. 9, it can be seen that the curve of each
dynamic channel congestion price evolves as a piecewise

Fig. 10. Evolution of social cost with a delayed pricing.
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Fig. 11. Evolutionary stability with a delayed pricing.

function with W = 200, while the price curve under the
constant learning rate can converge faster than that under
the vanishing learning rate. Fig. 9 also indicates that the
vehicular nodes contending for accessing a more congested
channel (i.e., the population share s3(k) is larger in Fig. 7),
e.g., channel 3, will be charged with a higher channel price
q3(s3(k), s(k)).

Fig. 10 compares the performance of the Nash
equilibrium-based channel access solution obtained from
the evolutionary dynamics with the proposed delayed chan-
nel pricing mechanism with the social optimum. It confirms
that the proposed dynamics with the delayed pricing can
converge to the optimal solution. Fig. 11 also reveals that
the Nash equilibrium obtained by the proposed dynamics
with the vanishing learning rate well coincides with the
socially optimal point. Additionally, the figure demonstrates
that the evolutionary stability of the proposed dynamics
with the delayed pricing can be guaranteed. That is, the
vehicular nodes with the proposed dynamics can always
converge to the optimal solution, i.e., the interior evolution-
ary equilibrium, from any initialization within the interior
space of the simplex or can return to the optimal state even
with any small local perturbation. The interior evolutionary
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Fig. 12. Evolution of channel prices with different delays.

Fig. 13. Evolution of social cost with different delays.

equilibrium point is indeed the Nash equilibrium, which is
also the evolutionary stable strategy that has the asymptotic
stability.

6.2.3 Impact of pricing delay
To investigate the impact of different pricing delays, we
implement the evolutionary dynamics with the dynamic
learning rate θ(k) = 30/(300 + k) for all k, and then
compare the numerical results under different delay param-
eters W ∈ {100, 300, 500, 700}. Fig. 12 shows the channel
price curves corresponding to different W . As expected,
the larger the pricing delay is, the slower the convergence
of the evolutionary dynamics becomes. Nevertheless, when
the number of the evolution epoch becomes very large, i.e.,
much larger than the finite W , the vehicular nodes can still
converge to the equilibrium state. The impact of different
pricing delays on the convergence is also shown in Fig. 13.
This figure reveals that the proposed dynamics even with
different finite pricing delays under the vanishing learning
rate can converge to the optimal steady performance as long
as the number of the epochs is sufficiently large.

6.2.4 Impact of time-varying environment
It is interesting to examine the adaptability of the proposed
dynamics under the dynamic learning rate and the constant

Fig. 14. Time-varying population size.

learning rate, respectively. Hence, we further conduct an
experiment, in which we consider the time-varying environ-
ment, i.e., the time-varying population size N(k), as shown
in Fig. 14. In the dynamic context, we consider that the
vehicular population size is gradually increasing along with
the evolution process and the grow rate of the vehicular
population is gradually decreasing (See Fig. 14). The channel
pricing delay is fixed at W = 200. Besides, we use the
dynamic learning rate θ(k) = 0.2/(400 + k) for all k and
θ = 0.0005.

Fig. 15 shows the evolution of the population state under
these two learning rates in the dynamic environment. As we
can expect, the evolutionary dynamics with the vanishing
learning rate cannot well accommodate the time-varying
environment, while the vehicular nodes with the constant
learning rate can converge much faster to the equilibrium
state. This fact is also confirmed in Fig. 16, which compares
that adaptation of the channel prices under the two learning
rates. Furthermore, from Fig. 17, we can also observe that
when the iteration number becomes large, the constant
learning rate can induce the vehicular nodes to closely
approach the socially optimal solution. Since the dynamic
learning rate becomes smaller and smaller along with the
iteration, it cannot capture the time-dependent dynamics of
the environment. Consequently, the vanishing learning rate
cannot efficiently adapt the access strategies of the vehicular
nodes. Clearly, combining all the numerical results in this
figures, we can see that there exists a trade-off in the selec-
tion of a learning rate in terms of the system adaptability
and its optimal performance.

6.2.5 Performance comparison
To demonstrate the advantages of the proposed dynam-
ic evolutionary game-theoretic method with the adaptive
channel pricing mechanism (marked as ‘‘DEG’’), we com-
pare it with a well-known distributed reinforcement learn-
ing scheme (marked as ‘‘DRL’’) proposed in the related
work [18]. In [18], the authors proposed the distributed
reinforcement learning scheme (also named Q-learning ap-
proach) for mobile users in heterogeneous accessing net-
works to achieve the Nash-equilibrium solution in an evo-
lutionary game. It is also worth pointing out that the rein-
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Fig. 15. Evolution of population shares in a time-varying environment.

Fig. 16. Evolution of channel prices with a delay W = 200 in a time-
varying environment.

Fig. 17. Evolution of social cost in a time-varying environment.

forcement learning mechanism or its variant is also widely
used in other evolutionary game-theoretic works focusing
on the issue of radio spectrum access such as [40] and [24].
Specifically, we implement the distributed reinforcement

learning scheme in a multi-agent setting. For any vehicular
node j, it needs to maintain a Q-value associated with a
channel i in each epoch k, denoted by Qi,j(k). Let p ∈ (0, 1)
denote a small probability with which the vehicular node j
performs a random exploration, i.e., determining an access
channel by random selection. In the reinforcement learn-
ing approach, the vehicular node j can decide its access
channel aj(k) at k by the stochastic exploration rule or
by the exploitation rule: i) if a uniform random number
generated at k, ψ(k) = rand(), satisfies ψ(k) ≤ p, then
j determines its access channel by uniformly and randomly
selecting a channel from M as aj(k); ii) otherwise, j decides
aj(k) = argmax∀i{Qi,j(k)} as its targeted access channel.
As long as a new payoff associated with a channel i is
observed, πWk

i (si(k), s(k)), the individual Q-value can be
updated by

Qi,j(k + 1) = (1− λI{aj(k)=i})Qi,j(k)

+ λI{aj(k)=i}

[
1

πWk
i (si(k), s(k))

+ βmax
∀i

{Qi,j(k)}
]
,

(32)

where λ and β are the learning rate and the discount factor
for the reinforcement learning, respectively. I{aj(k)=i} is
an indicator function which is equal to 1 only if aj(k) =
i, otherwise 0. Recalling that πWk

i (si(k), s(k)) is a cost-
type payoff, we transform it into a benefit-type payoff as
1/πWk

i (si(k), s(k)) that can be used in the payoff maximiza-
tion formulation as in (32).

To give an insight into the performance in terms of the
system convergence, stability and adaptability, we carry out
the performance comparison in three different simulation
environments, which include a static environment where
the population size N is fixed, a dynamic environment with
time-varying population size as well as a stochastic environ-
ment where the population size is dynamically and stochas-
tically changing. It should be noted that the parameters of
both the compared methods need to be appropriately set
in different application situations in order to guarantee the
system convergence and good performance. In addition, to
compare the system optimality, we calculate the time series
of the absolute error between the actual social cost obtained
by a scheme, G(s(k)), and the ideal optimal cost, G(s∗(k)),
by |G(s(k))−G(s∗(k))|. The corresponding average result
can also be evaluated by

∑T
k=1 |G(s(k))−G(s∗(k))|/T

where T is the total epoch number. Numerical results are
as follows.

1) Performance comparison in a static environment: To sim-
ulate a static environment, we fix the population size N at
N = 60 and set the channel pricing delay as W = 200.
Besides, to show the evolutionary stability of our proposed
method, we introduce a random strategic mutation for 30%
players of the whole population at the iteration k = 1000,
i.e., uniformly and randomly sampling 30% players from
the whole population and then changing their current s-
trategies. Such a random strategic mutation can be treated
as a perturbation for the system. The resulting evolutions of
the population shares, the channel prices and the payoffs
of the different subpopulations are shown in Figs. 18(a),
(b) and (c), respectively. It can be seen from Fig. 18(a)
that by using the proposed evolutionary dynamics, the
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(a) Evolution of population shares

(c) Evolution of populations’ payoffs (d) Evolution of absolute errors

(b) Evolution of channel prices

Fig. 18. Performance comparison in a static environment with a constant
population size N = 60 while a random strategic mutation is implement-
ed for 30% of the global population at k = 1000. Adopted parameter
settings include: W = 200, θ(k) = 30/(300 + k) for the dynamic
learning rate, θ(k) = 0.1 for the constant learning rate, λ = 0.05,
p = 0.01, β = 0.05.

(a) Evolution of population shares

(c) Evolution of populations’ payoffs

(b) Evolution of channel prices

(d) Evolution of absolute errors

Fig. 19. Performance comparison in a dynamic environment with in-
creasing population size as given in Fig. 14. Adopted parameter settings
include: W = 200, θ(k) = 2/(4× 103 + k) for the dynamic learning
rate, θ(k) = 5×10−4 for the constant learning rate, λ = 0.005, p = 0.01,
β = 0.005.

system can converge to an equilibrium point (also a Nash
equilibrium) with the population shares associated with the
2nd and the 3rd channels evolving to almost the same level
around 0.37 while that of the 1st channel converging to
around 0.25. Another important fact can also be observed
that even though a random perturbation is imposed on
the evolving population, our method can effectively restore
to the equilibrium point, indicating that the evolutionary
equilibrium point obtained is exactly the ESS and that the
system stability can be well guaranteed. In contrast, with
the distributed reinforcement learning scheme, the system
can only converge to a neighbor of the equilibrium point
within the given iteration epochs. From Figs. 18(b) and (c),
we can also see that after the perturbation at k = 1000,

our proposed method can better induce the channel prices
to converge to an equilibrium state and the payoffs of the
channels to the same level, which indicates that the system
arrives at the Nash equilibrium since all the players can gain
nothing by unilaterally changing their own strategies when
all the channel payoffs are the same. Additionally, Fig. 18(d)
illustrates the convergence of the absolute error between
the actual social cost and the ideal optimal cost. Compared
to the distributed reinforcement learning with the average
absolute error of 9.856, the absolute error of our method
converges to a much lower level with the average values of
1.472 and 0.407 for the dynamic learning rate and for the
constant learning rate, respectively. This figure shows that
our method can faster converge to around zero even with
the strategic perturbation occurring at k = 1000, indicating
that the attained Nash equilibrium is socially efficient and
evolutionarily stable.

2) Performance comparison in a dynamic environment: In
a dynamic environment, we increase the population size
N from 60 to around 325 over time, as shown in Fig. 14.
From Fig. 19, by comparison, it is obvious that our method
can adapt to the dynamically changing environment in a
more effective manner than the distributed reinforcement
learning scheme. In Fig. 19(a), it is seen that the population
shares in a equilibrium state in such a dynamic setting
are different from each other. Besides, Figs. 19(b) and (c)
show that our proposed evolutionary dynamics with the
dynamic learning rate and the constant learning rate can
better guarantee the convergence of both the channel prices
and the payoffs while the compared scheme cannot stably
converge within the given epochs. This fact is more obvious
from Fig. 19(d). As shown in Fig. 19(d), the absolute error of
the proposed evolutionary dynamics based on the constant
learning rate can faster converge than that based on the
dynamic learning rate, which confirms that the constant
learning rate achieves better adaptability. Nevertheless, the
absolute error of the proposed method implemented with
both the learning rates can finally almost converge to zero
(the average result of the dynamic learning rate is 63.958
and that of the constant learning rate is 50.359), while the
absolute error of the compared scheme with the average
result of 176.964 is shown to be fluctuating over time and
cannot converge to the neighbor of zero within the given
epochs.

3) Performance comparison in a stochastic environment:
Moreover, we compare our method with the distributed
reinforcement learning scheme in a stochastic environment
where the population size N is assumed to be time-varying
and follows a Poisson point process characterized by the
average rate E[N(k)] = 200. The evolution of N(k) over
epochs k and its distribution in the simulation experiment
are shown in Fig. 20. It can be observed from Figs. 21(a),
(b) and (c) that the evolutions of the population shares,
the channel prices and the channel payoffs with our pro-
posed method are less sensitive to the randomness in the
time-varying environment than those with the compared
scheme. Furthermore, Fig. 21(d) shows that the average of
the absolute error of our method is 20.236 for the dynamic
learning rate and 19.068 for the constant learning rate, which
is much less than that of the compared scheme (the average
of the absolute error of the compared scheme is 183.177).
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Fig. 20. Stochastic time-varying population size which follows a Pois-
son point process, i.e., N(k) ∼ Pois(E[N(k)]) with the average rate
E[N(k)] = 200.

(a) Evolution of population shares

(c) Evolution of populations’ payoffs

(b) Evolution of channel prices

(d) Evolution of absolute errors

Fig. 21. Performance comparison in a dynamic and stochastic envi-
ronment with stochastic population size as given in Fig. 20. Adopted
parameter settings include: W = 200, θ(k) = 2× 103/(4× 103 + k)
for the dynamic learning rate, θ(k) = 0.5 for the constant learning rate,
λ = 0.05, p = 0.01, β = 0.05.

Fig. 22. The distribution of the absolute error between the actual social
cost G(s(k)) and the ideal optimal cost G(s∗(k)) in a dynamic and
stochastic environment.

Another fact can also be confirmed from Fig. 21(d) that

our method can drive the system to faster adapt to the
fluctuating environment since the corresponding absolute
error associated with either the dynamic learning rate or the
constant learning rate can stably converge to around zero,
while the absolute error of the distributed reinforcement
learning scheme fluctuates above zero. Besides, we also
illustrate the distributions (the histograms) of the resulting
absolute errors in Fig. 22, which clearly shows that the
proposed evolutionary dynamics (with both types of the
learning rate) has much more absolute errors distributed n-
ear zero than the compared scheme does. This indicates that
our method can achieves better system-wide performance
in this stochastic environment by adapting the system to
converge to an equilibrium closer to the ideal optimal point.

7 CONCLUSION AND FUTURE WORK

We have formulated a discretized evolutionary dynamics
combined with a delayed channel pricing mechanism to op-
timize the channel access of competitive vehicular nodes in
a cognitive vehicular network. We have established the the-
oretical connections between the evolutionary equilibrium,
the Nash equilibrium, and the evolutionary stable strategy
of the formulated evolutionary game. Besides, we analyti-
cally derive the bound of the difference between the pro-
posed evolutionary dynamics with the delayed pricing and
that without a delay in pricing, proving that the asymptotic
stability of the proposed dynamics can be guaranteed. We
also obtain the theoretical bound of the difference between
the steady performance of the proposed dynamics and the
ideal optimal state under the shrinking and the constant
learning rates, showing that the shrinking learning rate can
induce the vehicular nodes to asymptotically converge to
the Nash equilibrium which is also the optimum point. In
contrast, we can only prove that the proposed dynamics
under the constant learning rate potentially approaches a
neighborhood of the optimal point. Nonetheless, applying
the constant learning rate can better adapt the cognitive
vehicular network to a dynamic environment, highlighting
an important trade-off between the system adaptability and
optimality. In the future research, it is expected to incor-
porate the impacts of not only the dynamics of the channel
competition from the perspective of the communication sys-
tem but also the temporal-spatial distribution of the vehicles
from the perspective of the transportation system.
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1 PROOF OF THEOREM 1
The optimization objective of (9), denoted by F (s) =∑M

i=1

∫ si
0 fi(x, s)dx, is a continuous version of Rosenthal’s

potential function [1]. Therefore, the formulated game is a
potential game, for which there exists at least one Nash
equilibrium. Furthermore, this result also guarantees that
a minimum point of the potential function F (s) is a Nash
equilibrium. Notice that the optimization objective function
in (9) is strictly convex and the set of s is compact. The
model above is indeed a convex optimization problem,
which can ensure that its local minimum arises as its global
minimizer and the global minimizer always and uniquely
exist. In other words, the existence and uniqueness of the
Nash equilibrium is guaranteed. To obtain the Nash equilib-
rium comes down to solving the convex optimization.

2 PROOF OF THEOREM 2
The definitions of sNE and s∗ obviously make 1 ≤
θ held. So we only need to prove θ ≤ λ

1−µ . Fur-
thermore, based on Lemmas 1 and 2, we can direct-
ly obtain

∑M
i=1 s

NE
i fi

(
sNE
i , sNE

)
≤ λ

∑M
i=1 s

∗
i fi (s

∗
i , s

∗) +

µ
∑M

i=1 s
NE
i fi

(
sNE
i , sNE

)
, which implies∑M

i=1 s
NE
i fi

(
sNE
i , sNE

)∑M
i=1 s

∗
i fi (s

∗
i , s

∗)
≤ λ

1− µ
. (S.1)

At this point, Theorem 2 is proven.

3 PROOF OF THEOREM 3
Notice that both the models (11) and (15) follow the same
constraints. Thus, they have the same feasible domain, im-
plying that the feasible solution of (11) is also the feasible
solution of (15) and vice versa. Moreover, they have strict
convex objective functions over the same convex set, which
means that i) their local minimizers are also their global
minimizers and ii) the global minimizers are unique.

Now, we let s∗ and zNE be the unique minimizers of
(11) and (15), respectively. We only need to show that s∗

and zNE are identical to each other to complete the proof.
Denote Fπ(s) =

∑M
i=1

∫ si
0 πi(x, s)dx. It is obvious that

▽sFπ(s) =
1
N ▽s G(s). Based on the Karush-Kuhn-Tucker

(KKT) conditions, given the socially optimal point s∗ of (11)
(it is the feasible points of (11) and (15)), its associated KKT
multipliers w∗

l ∈ R≥0 and v∗ ∈ R must exist, such that
▽sG (s∗) =

∑
l∈A(s∗) w

∗
l ▽s gl (s

∗) + v∗ ▽s h (s
∗), where

A(s∗) is the active set of the inequalities associated with
s∗, gl (s) = sl and h(s) = 1 −

∑M
l=1 sl. Therefore, we can

also correspondingly obtain ▽sFπ (s
∗) = 1

N ▽s G (s∗) =∑
l∈A(s∗)

w∗
l

N ▽s gl (s
∗) + v∗

N ▽s h (s
∗). This fact indicates

that there also must exist KKT multipliers w∗
l

N ∈ R≥0 and
v∗

N ∈ R associated with s∗ satisfying the KKT conditions of
the model (15). Thus, the socially optimal solution s∗ must
be the unique minimizer of (15), i.e., the Nash equilibrium of
the evolutionary game with the channel congestion pricing.
By the same means, given the Nash equilibrium of (15),
zNE, we can also prove that the KKT conditions of (11) can
also be guaranteed by zNE. Recalling the uniqueness of the
optimum in (11) and (15), we can prove s∗ = zNE.

4 PROOF OF THE CONVEXITY OF THE COST-TYPE
UTILITY FUNCTION

For the sake of simplicity, let ri =
∑L

l=1 cl,iProb1 {cl,i, i}+∑L
l′=1 c

′
l′Prob2 {c′l′}. To show the convexity of fi(si, s) giv-

en in equation (8) withe respect to the population share si,
we examine the property of its second derivative as follows.
We first yield the first-order derivative of fi(si, s) as

f ′i(si, s) =
−CN ln(1− αi)

αiri(1− αi)Nsi−1
. (S.2)

Based on (S.2), we then obtain the second derivative by

f ′′i (si, s) =
CN2 ln2(1− αi)

αiri(1− αi)Nsi−1
. (S.3)

Note that si ∈ [0, 1] and ln(1 − αi) < 0 due to the fact
αi ∈ (0, 1). f ′i(si, s) > 0 as well as f ′′i (si, s) > 0 is always
held, so that fi(si, s) is a strictly convex function of si.
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5 PROOF OF THEOREM 4
First, we would like to show that zNE is a strict Nash equi-
librium. According to the definition of the Nash equilibrium
in Definition 1, for any i ̸= i′ ∈ M and si > 0, si′ ≥ 0,
πi
(
sNE
i , zNE

)
≤ πi′

(
sNE
i′ ,zNE

)
. Suppose that one player

switches its strategy from i to i′. The strategy deviation
results in its new cost πi′

(
sNE
i′ + 1

N , s
′). Recalling that

πi′(si′ , s) is strictly monotonically increasing with respect
to si′ as π′

i′(si′ , s) = 2f ′i′(si′ , s) + sif
′′
i′(si′ , s) > 0, we can

have πi
(
sNE
i , zNE

)
≤ πi′

(
sNE
i′ , zNE

)
< πi′

(
sNE
i′ + 1

N , s
′).

In other words, the unilateral deviation from zNE can lead
to a strictly higher cost, which indicates that zNE is exactly
a strict Nash equilibrium. Moreover, [2] has shown that any
strict Nash equilibrium is also an ESS. Accordingly, zNE

must be an ESS, i.e., zNE = sESS.

6 PROOF OF THEOREM 5
We first show that ∀sEE(t) ∈ UEE\ŨEE always satisfies
sEE(t) ∈ ∆M−1 for all t ∈ R≥0. On the one side, by initial-
izing (17) at the point s(0) ∈ ∆M−1, we see

∑M
i=1 si(0) = 1.

Now, according to the definition of UEE\ŨEE, we can always
have d

(∑M
i=1 s

EE
i (t)

)
/dt =

∑M
i=1

(
dsEE

i (t)/dt
)

= 0 for
all t ∈ R≥0, where sEE

i (t) ∈ sEE(t). This means that∑M
i=1 s

EE
i (t) =

∑M
i=1 si(0) = 1 ∀ t ∈ R≥0. On the other side,

the basic property of the replicator dynamics (17) directly
guarantees ∀sEE

i (t) ≥ 0 for all t ∈ R≥0 when the initial
point is not negative, ∀si(0) ≥ 0. With both the results
aforementioned, we can have UEE\ŨEE ⊆ ∆M−1. That is
to say, all the points in UEE\ŨEE are feasible for the model
(11).

Next, it is observed that the definition of UEE\ŨEE

coincides with that of the Nash equilibrium given in Def-
inition 1. That is, any sEE(t) ∈ UEE\ŨEE is also the Nash
equilibrium of (15). Based on Theorem 3, it can be confirmed
that USO = UEE\ŨEE.

7 PROOF OF THEOREM 6
Let N (ϵ) =

{
s ∈ ∆M−1 |∥s− s∗∥ < ϵ, s ̸= s∗

}
be the

neighborhood of s∗. The set of indices of the zero
components in s∗ can be represented by A (s∗) =
{i ∈ M|s∗i = 0, s∗i ∈ s∗ }. Correspondingly, the set of in-
dices of the nonzero components in s∗ can be A (s∗) =
M\A (s∗).

Now we can conduct the perturbation analysis on s∗ by
introducing some small perturbations {εi(t) > 0 ∀i ∈ M}
that can constitute a disturbance v(t) = [v1(t), . . . , vM (t)]

T,
in which vi1(t) = εi1(t) > 0 for i1 ∈ A (s∗) while
vi2(t) = −εi2(t) < 0 for i2 ∈ A (s∗). Then, we denote
a new point deviated from s∗ by the disturbance v(t) as
s(t) = s∗ + v(t) ∈ N (ϵ). To guarantee the feasibility of
s(t), the small perturbations are assumed to ensure that
εi1(t) ≥ 0 for i1 ∈ A (s∗), εi2(t) ∈

[
0, s∗i2

)
for i2 ∈ A (s∗),

and
∑

i1∈A(s∗) εi1(t) −
∑

i2∈A(s∗) εi2(t) = 0. It can be seen
that

∑M
i=1 si(t) =

∑M
i=1 (s

∗
i + vi(t)) =

∑
i1∈A(s∗) εi1(t) +∑

i2∈A(s∗) (s
∗
i2
− εi2(t)) =

∑
i2∈A(s∗) s

∗
i2

= 1 always hold-
s. For the sake of simplicity, we use πi(si(t)) to denote
πi(si(t)) = πi(si(t), s(t)). Next, we analyze two cases of
i ∈ M as follows.

i) For any i1 ∈ A (s∗), following the replicator dynamics
(17) we can get dsi1(t)/dt = dεii(t)/dt by

dεi1(t)

dt
= σεi1(t)

 ∑
l1∈A(s∗)

εl1(t)πl1 (εl1(t))

+
∑

l2∈A(s∗)

(
s∗l2 − εl2(t)

)
πl2
(
s∗l2 − εl2(t)

)
− πi1 (εi1(t))

 .
(S.4)

By linearization, we can neglect the high-order terms of εi1 ,
i.e., εi1(t)εl1(t) and εi1(t)εl2(t), and then approximate the
above differential equation as

dεi1(t)

dt
≈ σεi1(t)


∑

l2∈A(s∗)

s∗l2πl2
(
s∗l2 − εl2(t)

)
− πi1 (εi1(t))

 . (S.5)

Due to the strictly monotonically increasing of πi(si(t))
with respect to si(t),

∑
l2∈A(s∗) s

∗
l2
πl2
(
s∗l2 − εl2(t)

)
<∑

l2∈A(s∗) s
∗
l2
πl2
(
s∗l2
)

= π(s∗) holds. According to Defi-
nition 1, we have π(s∗) ≤ πi1(0) < πi1 (εi1(t)) since s∗

corresponds to the Nash equilibrium as revealed by Theo-
rem 3. Hence, the coefficient of the first-order term of εi1(t)
is strictly negative, i.e.,A =

∑
l2∈A(s∗) s

∗
l2
πl2
(
s∗l2 − εl2(t)

)
−

πi1 (εi1(t)) < 0. Hence, (S.5) has the solution form εi1(t) =
εi1(0) exp {σAt}, which indicates that εi1(t) → 0 as t→ ∞.

ii) For any i2 ∈ A (s∗), using the similar way above we
can derive dsi2(t)/dt = d

(
s∗i2 − εi2(t)

)
/dt = −dεi2(t)/dt.

Thus, we further have

dεi2(t)

dt
= σ

(
εi2(t)− s∗i2

) [
π (s(t))− πi2

(
s∗i2 − εi2(t)

)]
.

(S.6)
Note that s∗ is an ESS as shown in Theorem 4. It fol-
lows the definition of the ESS given in Definition 2 that
π (s(t)) > π (s∗) always holds for any point in its neigh-
borhood s(t) ∈ N (ϵ) and s(t) ̸= s∗. Additionally, the Nash
equilibrium property also indicates π (s∗) = πi2

(
s∗i2
)
>

πi2
(
s∗i2 − εi2(t)

)
for all i2 ∈ A (s∗). Therefore, we see

π (s(t))−πi2
(
s∗i2 − εi2(t)

)
> 0. Noting εi2(t) ∈

[
0, s∗i2

)
, the

right-side term of (S.6) is always negative, i.e., dεi2(t)/dt <
0. We formulate a function of εi2(t) as V (εi2(t)) = (εi2(t))

2.
It can be easily found that

• V (εi2(t)) = 0 if and only if εi2(t) = 0,
• V (εi2(t)) > 0 if εi2(t) ∈

[
0, s∗i2

)
\{0}, and

• dV (εi2(t)) /dt = 2εi2(t)dεi2(t)/dt < 0 if εi2(t) ∈[
0, s∗i2

)
\{0} while dV (εi2(t)) /dt = 0 for εi2(t) = 0.

As a consequence, V (εi2(t)) is a Lyapunov function candi-
date and εi2(t) = 0 is asymptotically stable, i.e., from any
initial point εi2(0) ∈

[
0, s∗i2

)
\{0}, εi2(t) → 0 as t→ ∞.

Combining both the results above, we can conclude that
the socially optimal solution s∗ is asymptotically stable.

8 PROOF OF LEMMA 1
For the sake of simplicity, we let gi(s) = si ≥ 0 and
gi+M (s) = 1 − si ≥ 0 for i = 1, 2, . . . ,M be the equivalent
inequality constraints s ∈ [0, 1]M and denote by A(s)
the active set at any feasible point s that consists of the
indices of the inequality constraints l for which gl(s) = 0,
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i.e., A(s) = {l|gl(s) = 0, l = 1, 2, . . . , 2M}. Besides, let the
equality constraint of (9) be h(s) = 1 −

∑M
i=1 si. According

to Theorem 1, since the Nash equilibrium of the game model
(9), sNE, is the global minimizer of the convex optimization
problem, it must satisfy the Karush-Kuhn-Tucker (KKT)
conditions, i.e., the first-order necessary optimality condi-
tions for a feasible solution to be optimal in a constrained
optimization problem. That is, there always exist constants
wl ∈ R≥0 for l ∈ A(sNE) and v ∈ R, such that the following
equality is always held at sNE

▽sF
(
sNE

)
=

∑
l∈A(sNE)

wl ▽s gl
(
sNE

)
+ v▽s h

(
sNE

)
.

(S.7)
On the other hand, the feasibility of any feasible point

s̃ guarantees gl (s̃) ≥ 0 for all l. Because gl (s̃) is a linear
function of s̃, applying the first-order Taylor’s theorem to it
leads to gl (s̃) = gl

(
sNE

)
+
(
▽sgl

(
sNE

))T (
s̃− sNE

)
. Recall

gl
(
sNE

)
= 0 for all l ∈ A

(
sNE

)
. We can get

gl (s̃) =
(
▽sgl

(
sNE

))T (
s̃− sNE

)
≥ 0 (S.8)

for all l ∈ A
(
sNE

)
. h
(
sNE

)
is also a linear function. Thus,

we have h (s̃) = h
(
sNE

)
+
(
▽sh

(
sNE

))T (
s̃− sNE

)
. The

equality constraints h
(
sNE

)
= 0 and h (s̃) = 0 satisfied at

the Nash equilibrium sNE and the feasible s̃ further result
in (

▽shl
(
sNE

))T (
s̃− sNE

)
= 0. (S.9)

Combining (S.7) with (S.8) and (S.9) can get(
▽sF

(
sNE

))T (
s̃− sNE

)
=

∑
l∈A(sNE)

wl

(
▽sgl

(
sNE

))T (
s̃− sNE

)
+ v

(
▽sh

(
sNE

))T (
s̃− sNE

)
≥ 0,

(S.10)

which is indeed the result of Lemma 1. Additionally, it is
worth pointing out that the form of (S.10) can be viewed
as the variational inequality characterization of the Nash
equilibrium in the model (9).

9 PROOF OF LEMMA 2
We substitute the expressions of fi(si, s) and fi(s

′
i, s

′) into
(13) to get the following inequality

s′isi

(1− αi)
Nsi−1

≤ λ
s′2i

(1− αi)
Ns′i−1

+ µ
s2i

(1− αi)
Nsi−1

.

(S.11)
To prove (13) is then equivalently to prove (S.11). When
s′i = 0, it can be easily observed that (S.11) is satisfied
with µ > 0. In this case, Lemma 2 is held. Otherwise, we
examine the case of s′i ∈ (0, 1]. To simplify the mathematical
representation, let ν = si/s

′
i. With ν, we can rearrange (S.11)

as following

0 ≤ λ(1− αi)
N(si−s′i) + µν2 − ν. (S.12)

(1 − αi)
N(si−s′i) ≥ (1 − αi)

N is always held with 1 − αi ∈
(0, 1) and si, s

′
i ∈ [0, 1]. Additionally, since µ ∈ (0, 1) as

given in the condition of Lemma 2, µν2 − ν is a convex

function of ν, whose minimizer is obviously − 1
4µ . In other

words, µν2 − ν ≥ − 1
4µ is held with µ ∈ (0, 1). Combining

the results aforementioned with the condition µλ ≥ 1
4 (1 −

αi)
−N indicates λ(1−αi)

N(si−s′i)+µν2−ν ≥ λ(1−αi)
N −

1
4µ ≥ 1

4µ (1 − αi)
−N (1 − αi)

N − 1
4µ = 0. This means that

(S.12) is held and Lemma 2 is proven.

10 PROOF OF LEMMA 3
According to the expression of qi (si, s) as in (14), the
channel price explicitly involves the variable si. Thus, it
is obvious that |∂qi (si, s) /∂sl| = 0 for any l ̸= i and
l ∈ M, while |∂qi (si, s) /∂si| is finite due to the fact that si
is ranging within a closed interval [0, 1].

11 PROOF OF LEMMA 4
It follows the definition Wk = k −W

⌊
k
W

⌋
that

Wk

W
=

k

W
−
⌊
k

W

⌋
≤ 1. (S.13)

(S.13) always holds according to the basic property of the
floor function, which can further indicate Wk ≤W .

12 PROOF OF LEMMA 5
According to the definition of ∆si(k), the result of Lemma 5
holds when πWk(s(k)) − πWk

i (si(k), s(k)) = 0. Next, we
need only investigate the two cases where πWk(s(k)) and
πWk
i (si(k), s(k)) are not identical:

i) If πWk(s(k)) > πWk
i (si(k), s(k)), we can easily get

|∆si(k)| = σsi(k)
[
πWk(s(k))− πWk

i (si(k), s(k))
]

≤ σsi(k)π
Wk(s(k)) = si(k)

M∑
l=1

σsl(k)π
Wk

l (sl(k), s(k))

< si(k)
M∑
l=1

sl(k) = si(k).

(S.14)

The last inequality of (S.14) follows the condition of σ given
in (18), i.e., σπWk

i (si(k), s(k)) < 1 for all i ∈ M, and∑M
l=1 sl(k) = 1.
ii) As for πWk(s(k)) < πWk

i (si(k), s(k)), we can also
have in the similar way above

|∆si(k)| = σsi(k)
[
πWk
i (si(k), s(k))− πWk(s(k))

]
≤ σsi(k)π

Wk
i (si(k), s(k)) < si(k).

(S.15)

Thus, Lemma 5 is proven.

13 PROOF OF LEMMA 6
Using the mean value theorem we can represent the differ-
ence of any two functions πi(si, s) and πi(s̃i, s̃) with respect
to any s, s̃ ∈ ∆M−1, respectively, as πi(si, s) − πi(s̃i, s̃) =
(∂πi(si, s)/∂s|s=x)

T
(s− s̃) with an existing real number

ρ ∈ (0, 1), where xi = (1−ρ)si+ρs̃i and x = (1−ρ)s+ρs̃.
Based on this, we apply the Cauchy-Schwarz inequality to
derive the upper bound of the difference as

|πi(si, s)− πi(s̃i, s̃)| ≤
∥∥∥∥ ∂πi(si, s)∂s

∣∣∣∣
s=x

∥∥∥∥ ∥s− s̃∥ . (S.16)



4

Recalling Lemma 3, we have ∥∂πi(si, s)/∂s|s=x∥ ≤
√
MQ

and then derive

|πi(si, s)− πi(s̃i, s̃)| ≤
√
MQ ∥s− s̃∥ , (S.17)

which coincides with the definition of the Lipschitz conti-
nuity.
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