
1

Resource Allocation for Cache-enabled

Cloud-based Small Cell Networks

Xiuhua Li, Xiaofei Wang∗, Zhengguo Sheng,

Huan Zhou, and Victor C. M. Leung

Abstract

To address the serious challenge of satisfying explosively increasing multimedia content requests

from a massive number of users in mobile networks, deploying content caching in base stations to offload

network traffic while satisfying content requests locally has been regarded as an effective approach to

enhance the network performance. Moreover, content delivery via wireless transmissions in a cache-

enabled mobile network needs to be optimized taking the proactive caching policy into consideration.

Accordingly, in this paper, we investigate and propose an efficient resource allocation framework for

cache-enabled cloud-based small cell networks (C-SCNs) to achieve the benefits of content caching by

considering two phases, i.e., content placement and content delivery. In particular, for the content place-

ment phase, we propose a low-complexity distributed popularity-based framework for allocating cache

sizes of SBSs to popular contents, in order to offload network traffic and satisfy content requests locally.

For the content delivery phase, we propose a low-complexity joint user association and subcarrier-

power allocation scheme for min-rate guaranteed content delivery over orthogonal frequency division
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multiple access (OFDMA) based downlink transmissions. Trace-based simulations and numerical results

demonstrate the effectiveness of the proposed schemes in the cache-enabled C-SCNs.

Index Terms

Resource allocation, cloud-based small cell network, content caching, traffic load.

I. INTRODUCTION

With the growing popularity of smart portable devices such as smartphones and tablets,

and online social communities such as Facebook and Twitter, requests for multimedia contents

including video, photos, and audio from mobile users are experiencing explosive growth [1]. For

mobile network operators (MNOs), satisfying these content requests cost-effectively has become

a serious challenge. This problem is further worsened by the scarcity of network resources

especially in the radio access networks (RANs) and backhaul networks [2]–[4]. To address the

needs to deliver a massive amount of contents with satisfactory Quality of Service (QoS), next

generation mobile networking technologies, involving advanced network architectures and new

data transmission techniques [5]–[9], are emerging to support the growing network traffic load

effectively.

Caching contents at the edges, e.g., base stations (BSs) of mobile networks has recently

attracted much attention as an effective approach for offloading network traffic while satisfying

QoS, by bringing contents closer to users and then satisfying their content requests locally [1],

[6]. There have been a great number of studies focusing on the design of content caching schemes

in mobile networks. For instance, cooperative multi-cell caching in [10]–[12] and FemtoCaching

in [13] were proposed to cache popular contents in BSs or small BSs (SBSs), aiming at offloading

network traffic from massive content downloads and increasing the number of served mobile

users. In addition, the concept of Caching-as-a-Service (CaaS) was proposed in [14], focusing on

the framework design of virtual caching for offloading network traffic in Cloud-based RANs (C-

RANs). Moreover, cooperative BS caching frameworks were proposed in [1], [6], [15], [16], in

order to facilitate offloading network traffic by bringing contents closer to users, and improving

users’ QoS by reducing the time delay of accessing contents. However, most of these studies

only focus on content placement, and do not explore the last mile of content delivery via wireless

transmissions from BSs to users.
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In this paper, we aim to explore the joint resource allocation1 design of content placement as

well as content delivery via wireless transmissions. In practice, popular contents can be stored

in BS caches for a long period due to the relatively slow changes of content popularity, while

scheduling wireless transmissions of content delivery from BSs to users requires instantaneous

channel state information (CSI) of wireless cellular links and is inherently a short-time process.

Accordingly, in order to achieve the potential gains of content caching and enhance network

capacity, when designing schemes for content delivery via wireless transmissions, we can assume

that the states of the caches (i.e., caching status) are static during the wireless transmissions.

Furthermore, the corresponding resource allocation is essential in the scheme design. However,

there are only a few studies focusing on designing resource allocation schemes for wireless

transmissions of content delivery in cache-enabled systems. For instance, in [17], a pricing and

resource allocation framework was proposed based on stochastic geometry optimization, aiming

to maximize the profit of video caching in small cell networks. The studies in [18], [19] proposed

resource allocation schemes for software defined networking, caching and computing, focusing

on minimizing the system costs. However, wireless transmissions for content delivery have not

been considered in [17]–[19]. In [20], [21], multicast beamforming schemes were proposed

for content delivery via wireless transmissions from BSs to users with given caching status.

However, the study in [20] only focused on the theoretical analysis of system performance,

and did not take into account the detailed scheme design of resource allocation for real-time

content delivery satisfying the QoS requirements of users. Besides, the study in [21] did not

explore resource allocation with the technique of orthogonal frequency-division multiple access

(OFDMA), which has been widely employed in contemporary wireless access networks. In [22],

a resource allocation scheme was proposed for minimizing the total transmit power in cache-

enabled OFDMA C-RANs, but it did not take into consideration the limit of maximum transmit

power of each BS. Hence, resource allocation for content delivery via wireless transmissions in

cache-enabled mobile networks with the technique of OFDMA is still not well explored.

To fill the gap by extending our previous work [4], this paper focuses on designing efficient

resource allocation frameworks for cache-enabled cloud-based small cell networks (C-SCNs)

1Note that in cache-enabled mobile networks, content placement can also be regarded as a kind of resource allocation, where

the storage sizes of caches are allocated to contents.
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to achieve the potentials of content caching. Two phases, i.e., content placement and content

delivery, are considered. Specifically, in the content placement phase, to maximize network

traffic offloading while satisfying content requests locally, we propose a low-complexity dis-

tributed popularity-based framework for allocating cache sizes of SBSs to popular contents.

Wireless transmissions for content delivery from SBSs to users are considered in the content

delivery phase, given the caching status in the network. We propose a joint user association

and subcarrier-power allocation scheme for min-rate guaranteed content delivery via OFDMA

downlink transmissions. Further, to address the complexity of the formulated NP-hard opti-

mization problem regarding wireless content delivery, we use the alternating direction method

of multipliers (ADMM) [23]–[25] to split the problem into a set of simpler sub-problems for

which optimal solutions can be easily achieved, and propose corresponding methods for solving

the sub-problems as well as the whole problem with low complexity. Numerical results from

trace-based and Monte Carlo simulations demonstrate the effectiveness of the proposed schemes

in the cache-enabled C-SCNs.

The rest of this paper is organized as follows. In Section II, we introduce the network

architecture of cache-enabled C-SCNs. In Section III and Section IV, respectively, we propose

schemes for content placement based on popularity, and for wireless content delivery. In Section

V, we discuss the details of implementing the caching policy. Numerical results from trace-based

and Monte Carlo simulation to evaluate the performance of the proposed schemes are shown in

Section VI. Finally, Section VII concludes this paper.

II. NETWORK ARCHITECTURE

A general network architecture of cache-enabled C-SCNs is illustrated in Fig. 1 [4], [6].

Through backhaul links in the C-SCN, a cloud central unit (CCU) is connected to the Enhanced

Packet Core (EPC), while the EPC is connected to the Internet. Over the Internet, some service

providers (SPs), e.g., Facebook, Netflix, YouTube, offer different kinds of multimedia contents.

Besides, in the RAN, some small cells cover the whole area to support various service requests

from mobile users via wireless cellular links. Moreover, all the SBSs are connected to the CCU

through fronthaul links with low latency and high capacity. Each user in the C-SCN can be

associated with and served by multiple SBSs based on the actual channel conditions.

In particular, to offload the massive network traffic caused by downloading of contents from
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Fig. 1. Illustration of network architecture of cache-enabled C-SNCs.

SPs over the Internet and improve the QoS of users, a limited amount of caches are deployed at

all the SBSs, and thus each SBS can cache some contents to bring them closer to mobile users

and satisfy as many content requests locally as possible. The CCU makes decisions on how to

effectively push popular contents to the caches in its connected SBSs, and maintains a list of

the cached contents in all the SBSs at the cost of a small amount of signaling control overhead

that is assumed to be negligible [26]. All the required computations to enable this process are

performed in the CCU.

Popular contents can be stored in the caches deployed in SBSs for a relatively long period since

content popularity generally changes slowly. For instance, short-lifetime popular news with short

videos are updated every few hours, while long-lifetime new movies and new music videos are

posted weekly and monthly, respectively [10], [13]. However, scheduling wireless transmissions

for content delivery from BSs to users requires instantaneous channel state information (CSI) of

wireless cellular links and is inherently a short-time process with a time frame of a few minutes.

Thus, to achieve the benefits of content caching in the C-SCN, the design of the corresponding

scheme can be divided into two phases as follow:

• Content Placement Phase: In this phase, the CCU makes decisions on how to store contents

in all the SBSs to explore the maximum capacity of the given network infrastructure, by

allocating a cache size for each content in each SBS. Due to the relatively slow changes

of content popularity, the placement of contents in the C-SCN can remain static over a

relatively long time.

• Content Delivery Phase: In this phase, given the caching status of all the contents in the

C-SCN, in order to dynamically satisfy a content request from a user, the user’s associated

SBSs either return the content via wireless links with the technique of Coordinated Multi-
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Point (CoMP) transmissions if the content is locally available, or route the content request

to the CCU. Once a content request routed from an SBS is received at the CCU, the CCU

downloads the content directly via backhaul links over the Internet from the respective SP.

In particular, content delivery via wireless transmissions from SBSs to users is a process of

relatively short time duration in response to the instantaneous content requests from users,

and its design involves the allocation of radio resources, e.g., transmit power and bandwidth

in each SBS.

In this paper, we consider the case of a cache-enabled C-SCN with a CCU, M single-antenna

SBSs (denoted by M = {1, 2, . . . ,M}), F popular contents (denoted by F = {1, 2, . . . , F}),

and K active single-antenna users (denoted by K = {1, 2, . . . , K}) during a time period2. We

consider that OFDMA is used for wireless transmissions in the C-SCN with N non-overlapping

subcarriers (denoted by N = {1, 2, . . . , N}) of the same bandwidth Bs. We assume that the

capacities of the fronthaul and backhaul links are sufficiently large to support all the content

requests with the employ content caching policy in the C-SCN [26].

Due to the time diversity of the two phases mentioned above, the scheme design in the content

placement phase focuses on enhancing the long-time network performances from the perspective

of the whole network, while that in the content delivery phase focuses on the short-time wireless

transmissions for improving the QoS from the perspective of a specific group of users. In the

following, we present the scheme designs for the above two phases of content caching involving

resource allocation for the cache-enabled C-SCN in Sections III and IV, respectively.

III. CONTENT PLACEMENT BASED ON POPULARITY

In this section, we introduce the model of content placement in the considered cache-enabled

C-SCN, and propose a distributed content placement framework.

A. Content Placement Model

In the content placement phase, each content f is assumed to be either entirely cached in SBSm

or not, respectively denoted by xf
m = 1 or xf

m = 0. From a practical perspective, we assume that

2Note that in practice the total number of users is much greater than K in the network. We only consider the short-time

wireless transmissions during content delivery to satisfy the content requests from a given number of users that are active during

a specific time period, e.g., a time slot.



7

different contents have different storage sizes, which are denoted by {s1, s2, . . . , sF}. Denote the

cache storage sizes of SBSs as {S1, S2, . . . , SM}. We denote ϕm as the average overall arrival

rate of content requests received at SBSm, which can be defined as the ratio of the total number

of content requests received at SBSm to the entire time period considered, In a similar way, we

define the average arrival rate of the requests for content of received at SBSm as ϕf
m.

Particularly, based on [10], we also use Mandelbrot-Zipf (MZipf) distribution to model the

global popularity of the contents in the network, denoted as {P1, P2, . . . , PF}, which can be

expressed as

Pf =
(γf + c0)

−β∑
i∈F (γi + c0)−β

, ∀ f ∈ F (1)

where γf denotes the rank of the content f in the descending order of global content popularity,

while c0 ≥ 0 and β > 0 denote the plateau factor and the skewness factor, respectively. Note

that if the plateau factor c0 takes the value of zero, then the MZipf distribution reduces to Zipf

distribution [13]. Besides, denote ρfm as the local popularity of content f in the m-th small cell,

which is defined as the ratio of the number of requests of content f in the m-th small cell to the

total number of requests of all the contents in the network. As a result, we have Pf =
∑

m∈M ρfm

and ϕf
m = ρfm∑

i∈F ρim
ϕm for ∀m ∈M, ∀f ∈ F . We assume that the global/local popularity of each

content can be determined in advance or predicted by the system through learning and analysis

of user behavior and preference [1], and thus it is available in the network.

B. Distributed Content Placement Framework

In this phase, our objective is to minimize the expected sum of traffic load caused by utilizing

backhaul/fronthaul links for downloading contents directly from SPs to SBSs via CCU. This

optimization problem is equivalent to maximizing the expected sum of traffic offload among

SBSs while satisfying content requests locally. Here, similar to [10], we also regard ϕf
msf as the

generated average traffic load for the requests of content f received at SBSm.

Thus, under the constraints of limited cache storage capacity of SBSs, the corresponding

optimization problem for the popularity-based content placement can be formulated as

min
{xf

m}

∑
m∈M

∑
f∈F

xf
mϕ

f
msf (2a)

s.t.
∑
f∈F

xf
msf ≤ Sm, ∀m ∈M, (2b)
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xf
m ∈ {0, 1}, ∀m ∈M,∀f ∈ F . (2c)

The above problem in (2) can be further separated into M independent single knapsack

problems and solved in a distributed manner with the greedy method [1], thereby achieving

a distributed content placement framework for the cache-enabled C-SCN.

IV. CONTENT DELIVERY VIA WIRELESS TRANSMISSIONS

In this section, we introduce the model of wireless transmissions for content delivery in the

considered cache-enabled C-SCN, and propose an effective framework based on ADMM.

A. Wireless Transmission Model

In the content delivery phase, we consider the downlink OFDMA transmissions of a cache-

enabled C-SCN. We assume that interference between adjacent cells can be avoided even if the

maximum subcarrier reuse factor of 1 is applied. In addition, we assume that the CCU performs a

centralized control of content delivery taking available CSI and the information of users’ content

requests into account. The downlink channel is assumed to be slotted, and the scheme design

of resource allocation is performed on a slot-by-slot basis over much shorter time intervals than

those of status changes in content placement, which are relatively static and known to the CCU

during the process of content delivery.

Recall the indictors xf
m ∈ {0, 1} for whether SBSm caches content f or not, which is available

with the proposed content placement scheme. Denote yfk ∈ {0, 1} as the indictor for whether

content f is requested by user k or not, and each user accesses only one content in a time slot,

i.e.,
∑F

f=1 y
f
k = 1, ∀k ∈ K. Denote Sk = {m|xf

m = yfk = 1,m ∈ M, f ∈ F}, k ∈ K as the

set of SBSs that cache the requested content of user k, K1 = {k|Sk ̸= ∅, k ∈ K} as the set of

users whose requested contents are locally available, and K0 = K\K1 as the set of users whose

requested contents are not cached and need to be downloaded from SPS over the Internet through

backhaul links. In order to offload network traffic and reduce network costs with the help of the

given content placement scheme, each user in the set K1 is required to be associated with at least

one of the SBSs that cache the requested content while each user in the set K0 can be associated

with any SBS in the network. Denote hk,m,n and pk,m,n, respectively, as the complex channel gain

that takes into account of both large-scale and small-scale fading and transmit power from SBSm
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to user k on subcarrier n. Denote δk,n ∈ {0, 1} and δk,m,n ∈ {0, 1} as the respective indictors for

whether or not subcarrier n is allocated to user k in the network and from SBSm, respectively.

Here, {δk,n} satisfies
∑

k∈K δk,n ≤ 1,∀n ∈ N , while δk,m,n = 0,∀k ∈ K1, ∀m ∈M\Sk, ∀n ∈ N

holds3. Physically, if and only if the transmit power pk,m,n > 0 holds can subcarrier n be regarded

as being allocated to user k by SBSm, and user k is associated with SBSm on subcarrier n. Thus,

according to our previous work [25], we can derive the mathematical relationship between the

subcarrier allocation δk,m,n and pk,m,n as

δk,m,n = sign(pk,m,n) and δk,m,npk,m,n = pk,m,n (3)

where sign(x) ,

1, if x > 0,

0, if x = 0,
(x ≥ 0) is the step function. In a similar way, we can also

derive the relationship between δk,n and δk,m,n as

δk,n = max
m∈M

{δk,m,n} = sign
( ∑
m∈M

pk,m,n

)
. (4)

Thus, based on (3) and (4), we can conclude that the joint user association and subcarrier-

power allocation problem can be transformed into an equivalent power allocation problem by

introducing the defined step function.

Moreover, based on (3) and by allowing multiple SBSs to transmit to one user by Coordinated

Multi-Point (CoMP) transmissions, e.g., employing the maximum ratio transmission (MRT)

technique [25], we can get the signal-to-noise ratio (SNR) of user k on subcarrier n from

all the SBSs as

ρk,n=

∑
m∈M pk,m,n | hk,m,n |2

σ2
N

, ∀k∈K,∀n∈N (5)

where σ2
N is the power of the zero-mean additive white Gaussian noise (AWGN) at the receiver

input. Thus, the channel capacity of user k on subcarrier n from all the SBSs can be expressed

as

rk,n= Bs log2(1+ ρk,n), ∀k∈K,∀n∈N . (6)

Then we can get the overall data rate of user k from all the SBSs and subcarriers as

Rk =
∑
n∈N

rk,n, ∀k ∈ K. (7)

3Note that for some (k, n),
∑

m∈M δk,m,n > 1 may hold in the resource allocation scheme. In other words, each subcarrier

can be allocated to at most one user to avoid interference, but multiple SBSs can allocate the same subcarrier to the same user

in the network.
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B. Problem Formulation for Content Delivery

In this phase, our objective is to maximize the weighted sum of data rates of all the users

in a cache-enabled C-SCN based on joint user association and subcarrier-power allocation

for the OFDMA downlink transmissions of min-rate guaranteed content delivery. The overall

optimization problem for content delivery via wireless transmissions is formulated as

max
P∈RK×M×N

λ
∑
k∈K1

ωkRk +
∑
k∈K0

ωkRk (8a)

s.t. pk,m,n ≥ 0, ∀k ∈ K,∀m ∈M, ∀n ∈ N , (8b)∑
k∈K

∑
n∈N

pk,m,n ≤ pmax
m , ∀m ∈M, (8c)

Rk ≥ Cmin
k , ∀k ∈ K, (8d)

δk,m,n = sign(pk,m,n),∀k ∈ K,∀m ∈M,∀n ∈ N , (8e)

δk,m,n=0, pk,m,n=0,∀k∈K1, ∀m∈M \ Sk, ∀n∈N , (8f)

δk,n = max
m∈M

{δk,m,n}, ∀ k ∈ K,∀n ∈ N , (8g)∑
k∈K

δk,n ≤ 1, ∀n ∈ N (8h)

where the weighting factors λ ≥ 1 and ωk denote the network priority of the users whose

requested contents are locally cached and the individual priority of user k, respectively; P =

{pk,m,n}K×M×N; pmax
m denotes the maximum transmit power of SBSm; Cmin

k denotes the required

minimum data rate of user k. Note that all the sets K0, K1 and {Sk} are dependent on both

the achieved content placement policy {xf
m} and the users’ content requests {yfk}, and can be

pre-determined before content delivery via wireless transmissions. Mathematically, the transmit

power constraints in (8b) and (8c) imply that

0 ≤ pk,m,n ≤ pmax
m , ∀k ∈ K,∀m ∈M, ∀n ∈ N , (9)

which is useful in the algorithm design [27]. Denote P as the feasible solution set of the problem

in (8). Clearly, the problem in (8) is a mixed 0-1 nonconvex optimization problem and thus is

NP-hard [28].
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C. ADMM-based Decomposition

In order to solve the formulated NP-hard optimization problem in (8), we aim at providing

a suboptimal solution with low-complexity by employing the ADMM used in [23]–[25]. The

main idea of ADMM is to decompose the complex original problem into a series of subproblems

that are much simpler to solve, and to combine the solutions to the subproblems together in a

principled manner to obtain the solution to the original problem finally. Accordingly, based on

the idea of ADMM, we first divide the large-scale constraints in (8) into two small-scale groups

and define two sets as

SP =
{
P ∈ RK×M×N (8c), (8d), (8f) and (9)

}
, (10)

SQ=
{
P ∈ RK×M×N (8e)− (8h) and (9)

}
. (11)

Clearly, the set SP aims to satisfy the constraints of the required minimum data rates of the

users and the maximum transmit power of the SBSs, and is convex. The set SQ is to satisfy

the constraints of user association and subcarrier allocation, but is discrete and nonconvex.

Consequently, the feasible solution set satisfies P = SP ∩ SQ, i.e., P ∈ SP and P ∈ SQ. Then

the problem in (8) can be rewritten as

min
P∈SP,Q∈SQ

F (P) (12a)

s.t. P = Q (12b)

where F (P) = −λ
∑

k∈K1
ωkRk −

∑
k∈K0

ωkRk, and Q = {qk,m,n}K×M×N ∈ RK×M×N is an

introduced variable matrix. Thus, the problem in (8) is equivalently transformed to the problem

in (12) with an equality constraint.

Then the problem in (12) can be turned into a minimization problem by introducing the

corresponding augmented Lagrangian function as

L(P,Q,L, θ) = F (P) + ⟨P−Q,L⟩+ θ

2
(∥P−Q∥22) (13)

where L ∈ RK×M×N denotes the Lagrange multiplier matrix associated with the constraint (12b);

θ > 0 is a quadratic penalty scalar; ⟨x, y⟩ denotes the sum of all the elements of x ◦ y, where ◦

denotes the Hadamard product.

By employing ADMM-based decomposition, the joint optimization problem w.r.t. the aug-

mented Lagrangian function in (13) can be decomposed into three subproblems as follow:
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1) Subproblem 1: Optimization of P with fixed Q, L and θ, which is formulated as

min
P∈SP

F (P) +
θ

2
∥P− CP∥22 (14)

where CP = Q− L
θ

is a constant matrix w.r.t. P.

2) Subproblem 2: Optimization of Q with fixed L and θ, which is formulated as

min
Q∈SQ

∥Q− CQ∥22 (15)

where CQ , P∗ + L
θ

is a constant matrix w.r.t. Q, and P∗ is the optimal solution to Subproblem

1.

3) Subproblem 3: Updating of L and θ iteratively with the achieved (P∗,Q∗), where Q∗ is

the optimal solution to Subproblem 2.

In the above ADMM-based decomposition, Subproblem 1 is a convex optimization problem,

and thus its optimal solution can be easily achieved by employing optimization techniques

(e.g., subgradient method) as shown in Section IV-D. Subproblem 2 is a discrete nonconvex

optimization problem, but its optimal solution can be solved with a low-complexity distributed

search algorithm as shown in Section IV-E. Subproblem 3 can be solved by updating L and θ

based on the principles of ADMM, and thus the whole original problem in (12) can also be

solved as shown in Section IV-F.

In other words, by employing ADMM, the original NP-hard optimization problem is decom-

posed into a series of simpler subproblems where their optimal solutions can be obtained easily.

Note that due to the non-convexity of the original complex problem, the final solution will be

suboptimal.

D. Solutions to Subproblem 1

Subproblem 1 in (14) can be rewritten in a standard form as

min
P∈RK×M×N

− λ
∑
k∈K1

ωkRk(P)−
∑
k∈K0

ωkRk(P) +
θ

2
∥P−CP∥22 (16a)

s.t. 0 ≤ pk,m,n ≤ pmax
m ,∀k∈K, ∀m∈M, ∀n∈N , (16b)

pk,m,n = 0, ∀k ∈ K1, ∀m ∈M \ Sk,∀n ∈ N , (16c)∑
k∈K

∑
n∈N

pk,m,n ≤ pmax
m , ∀m ∈M, (16d)
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−Rk(P) + Cmin
k ≤ 0, ∀ k ∈ K, (16e)

which is a convex optimization problem w.r.t. P.

Then by employing standard optimization techniques in [29], we can get the corresponding

Lagrangian function as

L1(P,ν,µ) =
θ

2
∥P−CP∥22 −

∑
k∈K1

(λωk + µk)Rk(P)−
∑
k∈K0

(ωk + µk)Rk(P)

+
∑
k∈K

∑
m∈M

∑
n∈N

νmpk,m,n −
∑
m∈M

νmp
max
m +

∑
k∈K

µkC
min
k (17)

where ν is the Lagrange multiplier vector associated with the constraint (16d) with elements

νm, ∀m ∈M, and µ is the Lagrange multiplier vector associated with the constraint (16e) with

elements µk,∀k ∈ K.

After differentiating L1(P,ν,µ) w.r.t. P, we can obtain

∂L1

∂pk,m,n

=θ[pk,m,n−(CP )k,m,n]+νm−
Bsϖk

ln 2

Hk,m,n

1+
∑

j∈M Hk,j,n pk,j,n
, ∀k∈K,∀m∈M,∀n∈N (18)

where Hk,m,n =
|hk,m,n|2

σ2
N

,∀k ∈ K,∀m ∈M,∀n ∈ N , and

ϖk =

λωk + µk, if k ∈ K1,

ωk + µk, if k ∈ K0.
(19)

We use the subgradient method to get the optimal solution to Subproblem 1. The multipliers

(ν,µ) are updated in each step as

ν(t+1)
m =

[
ν(t)
m +ξ(t)

(∑
k∈K

∑
n∈N

pk,m,n − pmax
m

)]+
, ∀m∈M, (20)

µ
(t+1)
k =

[
µ
(t)
k + ξ(t)

(
Cmin

k −R
(t)
k

)]+
, ∀k ∈ K (21)

where t is the iteration index, ξ(t) > 0 is a step size in the t-th iteration, and [x]+ , max{x, 0}.

If the step sizes {ξ(t)} are selected to be sufficiently small, e.g., ξ(t) = 1+K
t+K

, the convergence to

the optimal multipliers (ν∗,µ∗) with the subgradient method can be guaranteed [29].

In addition, with fixed (ν(t),µ(t)), the elements of P∗ are updated as

p
(t)
k,m,n =

0, if k ∈ K1,m ∈M \ Sk, n ∈ N ,

min
{[
T

(t)
k,m,n

]+
, pmax

m

}
, otherwise

(22)
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where T
(t)
k,m,n =

b
(t)
k,m,n+

√
[b

(t)
k,m,n]

2+4Hk,m,na
(t)
k,m,n

2Hk,m,n
, b(t)k,m,n = c

(t)
k,m,nHk,m,n−

∑
j∈M\{m}Hk,j,np

(t)
k,j,n− 1,

a
(t)
k,m,n = c

(t)
k,m,n[

∑
j∈M\{m} Hk,j,np

(t)
k,j,n + 1] +

Bsϖ
(t)
k

θ ln 2
Hk,m,n, and c

(t)
k,m,n = (CP )k,m,n − ν

(t)
m

θ
.

The procedure of the proposed subgradient method for solving Subproblem 1 is shown in

Algorithm 1, and the corresponding complexity and convergence analysis can be found in [29].

Algorithm 1 consists of an inner loop and an outer loop. With the given Lagrangian multipliers

(ν,µ) at each iteration, the inner loop aims to update P, which converges to the unique optimal

solution as a result of the convexity of (17). mThe solution P obtained using Algorithm 1 is

optimal to Subproblem 1.

Algorithm 1 Subgradient Algorithm for Solving Subproblem 1 w.r.t. P.
1: Input: Bs, σ2

N , (hk,m,n)K×M×N , λ, (ωk)K×1, (pmax
m )M×1, (Cmin

k )K×1, CP , θ, Pini.

2: Initialize t = 0, ν(0) ≻ 0M×1, µ(0) ≻ 0K×1, convergence precision ϱ = 10−4, maximum iterations Nmax = 20,

P(0) = Pini.

3: while (ν,µ) not converge do

4: while not exceed Nmax or P not converge do

5: Update P(t) according to (22).

6: end while

7: Set t← t+ 1.

8: Update ν(t) and µ(t) based on (20) and (21), respectively.

9: Check the convergence condition: ∥ν(t) − ν(t−1)∥∞ ≤ ϱ and ∥µ(t) − µ(t−1)∥∞ ≤ ϱ.

10: end while

11: Output: P.

E. Solutions to Subproblem 2

Subproblem 2 in (15) can be rewritten as

min
Q∈RK×M×N

∥Q− CQ∥22 (23a)

s.t. 0 ≤ qk,m,n ≤ pmax
m , ∀k∈K,∀m∈M,∀n∈N , (23b)

qk,m,n = 0, ∀k ∈ K1,∀m ∈M \ Sk,∀n ∈ N , (23c)∑
k∈K

max
m∈M

{sign(qk,m,n)} ≤ 1, ∀n ∈ N . (23d)
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Subproblem 2 is nonconvex, but can be further divided into N subproblems and solved in parallel.

Accordingly, we propose a distributed search method in a closed form as shown in Algorithm

2 to find the optimal solution to Subproblem 2. The time complexity of Algorithm 2 is linear,

i.e., O(KMN).

Algorithm 2 Distributed Search Algorithm for Solving Subproblem 2 w.r.t. Q.
1: Input: P, L, θ, (pmax

m )M×1.

2: Initialize Q = {qk,m,n}K×M×N = 0K×M×N , T = {tk,m,n}K×M×N = 0K×M×N .

3: Calculate CQ.

4: for n = 1 to N do

5: for k = 1 to K do

6: if k ∈ K1 then

7: Set tk,m,n = min
{[(

CQ

)
k,m,n

]+
, pmax

m

}
for ∀m ∈ Sk.

8: else

9: Set tk,m,n = min
{[(

CQ

)
k,m,n

]+
, pmax

m

}
for ∀m ∈M.

10: end if

11: end for

12: Given n, find k∗n = arg min
k∈K

{ M∑
m=1

(
tk,m,n − CQ

)
k,m,n

)2}
.

13: if k∗n multiple then

14: Select one randomly.

15: end if

16: Set qk∗
n,m,n ← tk∗

n,m,n for ∀m ∈M.

17: end for

18: Output: Q.

F. Solutions to Subproblem 3

After solving Subproblem 1 and Subproblem 2 to find their optimal solutions w.r.t. P and

Q, respectively, Subproblem 3 is concerned with updating the multiplier L and the quadratic

penalty scalar θ. Based on the rules of ADMM, they are updated in each step as

L(τ+1) = L(τ) + θ(τ)
(
P(τ+1) −Q(τ+1)

)
, (24)

θ(τ+1) = min
{
θmax,∆ · θ(τ)

}
(25)
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where τ is the iteration index, while θmax > 0 and ∆ > 1 are given positive scalars. The procedure

of the proposed ADMM for solving the whole problem in (12) is shown in Algorithm 3. In the

iterative process, with the updated multiplier L and quadratic penalty scalar θ, Algorithm 3

solves Subproblem 1 and Subproblem 2 to update P and Q, respectively. Moreover, the ADMM

converges to the corresponding suboptimal solution to the optimization problem in (12) [23],

[30].

Algorithm 3 ADMM for Solving the whole Problem in (12).
1: Input: Bs, σ2

N , (hk,m,n)K×M×N , λ, (ωk)K×1, (pmax
m )M×1, (Cmin

k )K×1.

2: Initialize τ = 0, P(0) = 0K×M×N , Q(0) = 0K×M×N , L(0) ≻ 0K×M×N , θ(0) > 0, θmax > 0, ∆ > 1,

convergence precision ε = 10−4.

3: while not converge do

4: Update P(τ) by solving Subproblem 1.

5: Update Q(τ) by solving Subproblem 2.

6: Set τ ← τ + 1.

7: Update L(τ) and θ(τ) according to (24) and (25), respectively.

8: Check the convergence condition: ∥P(τ) −Q(τ)∥∞ ≤ ε.

9: end while

10: Output: P.

In particular, to initialize Algorithm 3, the multiplier L can be set randomly. The scalar

θ is generally initialized with a small value, e.g., θ(0) = 10−3, while the scalar θmax can be

initialized as a relatively large value, e.g., θmax = 106. The scalar ∆ needs to be initialized

properly according to the convergence rate of ADMM, which is neither too large nor too small,

e.g., ∆ = 1.2. However, with different feasible initializations, ADMM can always converge

but needs different numbers of iterations for satisfying the given convergence condition, and its

corresponding complexity and convergence analysis can be found in [23], [30], [31].

V. IMPLEMENTATION OF CACHING POLICY

Based on the proposed schemes of content placement and content delivery, the caching policy

can be implemented in the CCU management process as shown in Fig. 2. Generally, after

collecting and analyzing the global information including user characteristics, content features

and communication scenario from SBSs and mobile users, the CCU computes the correspond
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Fig. 2. The CCU management process implementing the caching policy.

caching policy in terms of content placement and content delivery, and communicates with the

connected SBSs.

Particularly, in the content placement phase, the global/local popularity {Pf , ρ
f
m} and the

arrival rate {ϕm} can be obtained to calculate the arrival rate {ϕf
m}. Then by considering the

arrival rate {ϕm}, content sizes {sf} and the cache sizes {Sm}, the content placement problem

can be formulated as in (2). After solving it, the content placement policy {xf
m} can be found.

Moreover, in the wireless transmissions of content delivery phase, the content delivery problem

can be formulated as in (8) by considering the obtained content placement policy {xf
m} with

the priority {λ, ωk}, user CSI {hk,m,n}, user requests {yfk}, user QoS requirements {Cmin
k } and

SBSs’ resources, i.e., maximum transmit power and subcarriers. After solving this problem with

the proposed ADMM, the content delivery policy {pk,m,n} can be determined.

VI. EVALUATION RESULTS

In this section, we evaluate the performance of our proposed schemes of resource allocation

in the cache-enabled C-SCN with respect to the considered two phases of content caching. For

simulation purposes, the whole service area is set as a circle with a radius of 500 meters, and
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fully covered by five small cells, i.e., M = 5. The five SBSs, each with a coverage radius of 250

meters, are uniformly distributed in the circle. We further assume that the SBSs have the same

cache size and maximum transmit power, i.e., Sm ≡ S and pmax
m ≡ pmax,∀m ∈M, respectively.

A. Trace-based Results in Content Placement

In this subsection, we evaluate the performance of our proposed content placement scheme in

the cache-enabled C-SCN. We use the trace of a real-world proxy caching system, IRCache as

used in [6]. For our simulations, the trace data for 7 days in June 2013 were collected to obtain

user requests of popular contents over the Internet as well as their content sizes. The data set

consists of 50, 000 popular contents and 4, 928 users, corresponding to 516, 135 content requests.

In addition, we use random settings for mapping the association between users and SBSs for

calculating the local/global popularity of contents as well as the average arrival rate of content

requests.

1) Distributions

Fig. 3 shows different distributions in the IRCache trace and random settings. From Fig. 3(a)

and Fig. 3(b), we can observe that the actual global content popularity and content size in the

IRCache trace can be well fitted by a MZipf distribution and a Pareto distribution, respectively,

agreeing with the model on the global content popularity used in (1) and the corresponding

conclusion in [33]. Fig. 3(c) and Fig. 3(d) show the local content popularity and average overall

arrival rate (around 10 requests per minute) in each SBS, respectively, in the random setting as

a result of the joint consideration of the IRCache trace and random user association. Note that

the following evaluation results are based on the above practical trace and random setting.

2) Effects of Different Cache Sizes of Each SBS

In particular, we compare the proposed scheme with two baseline schemes as: i) Most Popular

Caching, derived by caching most popular contents in each SBS with given content popularity,

which aims to maximize the cache hit ratio4 based on the the constraints of cache sizes of SBSs;

ii) Least Recently Used (LRU) Caching, an online scheme derived from [34] to address the

problem of content placement in this paper; iii) Random Caching, derived by randomly filling

contents in each SBS until the cache is full without any information of content popularity.

4The cache hit ratio is defined as the ratio of tsupported number of content requests by the caching scheme to the total number

of content requests in the network, i.e.,
(∑

m∈M
∑

f∈F xf
mϕf

m

)
/
(∑

m∈M ϕm

)
in this paper.
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Fig. 3. Different distributions in the IRCache trace and random setting.
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Fig. 4. Percentage of traffic offload and cache hit ratio versus different caches sizes (percentage to the total content size) of

each SBS.
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Fig. 4 compares the performance of the proposed scheme with the baseline schemes in terms

of percentage of traffic offload and cache hit ratio versus different caches sizes (percentage to

the total content size) of each SBS. From Fig. 4, we can observe that as the cache size of each

SBS increases, a higher percentage of traffic offload and higher cache hit ratio can be achieved

in all the schemes. Most importantly, the proposed scheme can offload the most network traffic

and the most popular caching scheme can achieve the highest cache hit ratio, which can be

mathematically explained due to the difference between their optimization objectives. Besides,

LRU caching scheme is inferior to both the proposed scheme and most popular caching scheme

in both traffic offloading and cache hit ratio since LRU caching scheme only utilizes partial

information of content popularity, while the random caching scheme has the worst performance

since no information on content popularity is used. For instance, when the cache size of each

SBS is set as 10% of the total size of contents, two observations can be made as follow: i) from

Fig. 4(a), the proposed scheme, most popular caching scheme, LRU caching scheme, and random

caching scheme can offload the network traffic by 64.7%, 59.0%, 34.3% and 8.5%, respectively;

ii) from Fig. 4(b), these four schemes can achieve the cache hit ratio of 63.2%, 73.0%, 39.4%

and 9.2%, respectively.

B. Numerical Results on Content Delivery

In this subsection, we evaluate by Monte-Carlo simulations the performance of our proposed

joint user association and subcarrier-power allocation scheme for content delivery in the cache-

enabled C-SCN over OFDMA downlinks. We consider that active users are uniformly distributed

in the service area. Based on [25], we set the system bandwidth B as 2.5 MHz, subcarrier

number N as 128, and carrier center frequency as 2.5 GHz. For the channel model, we set

path loss exponent as 3.7, lognormal shadowing standard deviation as 8 dB, and noise power

density as -174 dBm/Hz. The random channel fluctuations for small-scale fading are modeled

as Rayleigh fading with unit average power. Based on the above performance of the proposed

content placement scheme in terms of offloading network traffic and supporting content requests

locally, we set the cache size of each SBS as 10% of the total size of contents. Each active user

is set to have identical individual priority (i.e., ωk = 1,∀k ∈ K) and randomly requests only one

of the considered contents in a time slot. Besides, we set the network priority as λ ∈ {1, 5, 10},

and consider that about 60% of the users requested contents are locally cached in the SBSs.
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We set 128 Kbps as the required minimum data rate (i.e., {Cmin
k }) for delivering a content to a

user. We average the performance over 100 random channel realizations to obtain the presented

numerical results.

Note that according to the above settings, if the network priority λ takes the value of 1, then

the proposed scheme is reduced to the general scheme for maximizing the total data rate under

the same considered constraints in the cache-enabled C-SCN.

1) Convergence Performance of ADMM

Fig. 5 illustrates the convergence performance of the proposed ADMM in Algorithm 3 versus

its complexity. For illustration purposes, we set the user number and the maximum transmit power

(K, pmax) as (10, 25 dBm) and (20, 30 dBm). Seen from Fig. 5, we can observe that in all the

considered settings, Algorithm 3 requires at most 120 iterations to satisfy the given convergence

condition. In particular, all the weighted sum of data rates (i.e., the considered optimization

objective) decreases rapidly in [20, 90] iterations and then gradually converges. In addition, we

can see that at the beginning of the iterative process of the proposed Algorithm 3, the values of

weighted sum of data rates may be relatively large since the obtained transmit power matrix P

only satisfies a part of the considered constraints, but Algorithm 3 always converges to a local

optimum that satisfies all the considered constraints.
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Fig. 5. Weighted sum of data rate versus iteration number.

2) Effects of Different Maximum Transmit Power

Fig. 6 evaluates the effects of different maximum transmit power of SBSs on the weighted

sum of data rates and sum of data rates in different settings. As seen from Fig. 6, with the

increase of the maximum transmit power, all the achieved weighted sum of data rates and sum
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of data rates also go up. In particular, a larger value of the chosen λ leads to larger achieved

weighted sum of data rates but smaller sum of data rates, which can be explained by two

facts: 1) mathematically, maximizing the objective λ
∑

k∈K1
ωkRk+

∑
k∈K0

ωkRk is equivalent to

maximizing
∑

k∈K1
ωkRk+

1
λ

∑
k∈K0

ωkRk; 2) due to the larger network priority, more resources

need to be allocated to the users whose requested contents are locally cached in the SBSs, while

satisfying their required minimum data rates for content delivery. In addition, a larger number

of users leads to an increase in the weighted sum of data rates and sum of data rates, as a result

of the multiuser diversity gain.

3) Effects of Different User Numbers

Fig. 7 compares the weighted sum of data rates and sum of data rates versus different number

of users in different settings. From Fig. 7, we can observe that all the weighted sum of data

rates and sum of data rates go up with the increase of the number of users due to the multiuser

diversity gain. Besides, a larger value of the chosen network priority λ leads to a larger weighted

sum of data rates but a smaller sum of data rates as well.
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Fig. 6. Weighted sum of data rates and sum of data rates versus maximum transmit power.

VII. CONCLUSIONS

In this paper, we have proposed an efficient resource allocation framework for cache-enabled

C-SCNs to achieve the benefits of content caching by considering two phases, i.e., content

placement and content delivery. In particular, in the content placement phase, we have proposed

a low-complexity distributed popularity-based framework for allocating cache sizes of SBSs to
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Fig. 7. Weighted sum of data rates and sum of data rates versus different numbers of users when pmax = 35 dBm.

popular contents, aiming to maximize the expected sum of traffic offload in the network while

satisfying content requests locally. Besides, in the content delivery phase, we have considered

the wireless transmissions of contents from SBSs to users with given caching status in the

network, and proposed a joint user association and subcarrier-power allocation scheme for min-

rate guaranteed content delivery over OFDMA downlinks. To solve the formulated NP-hard

optimization problem concerning the wireless resource allocation, we have proposed an approach

using ADMM to decompose the problem into a series of simpler sub-problems for which optimal

solutions can be easily obtained, and proposed the corresponding low-complexity algorithms to

solve the sub-problems as well as the whole original problem, thereby realizing a design that

is attractive for practical implementation. Numerical results from trace-based and Monte-Carlo

simulations have been presented to illustrate the effectiveness of the proposed schemes in the

cache-enabled C-SCNs.
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