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Abstract—Cooperation is a promising paradigm to improve
spatial diversity in vehicular ad-hoc networks. In this paper, we
pose a fundamental question: how the greediness and selfishness
of individual nodes impact cooperation dynamics in vehicular
ad-hoc networks. We map the self-interest-driven relay selection
decision-making problem to an automata game formulation and
present a non-cooperative game-theoretic analysis. We show
that the relay selection game is an ordinal potential game. A
decentralized self-organized relay selection algorithm is proposed
based on a stochastic learning approach where each player
evolves toward a strategic equilibrium state in the sense of
Nash. Furthermore, we study the exact outage behavior of
the multi-relay decode-and-forward cooperative communication
network. Closed-form solutions are derived for the actual outage
probability of this multi-relay system in both independent and
identically distributed channels and generalized channels, which
need not assume an asymptotic or high signal-to-noise ratio. Two
tight approximations with low computational complexity are also
developed for the lower bound of the outage probability. With
the exact closed-form outage probability, we further develop
an optimization model to determine optimal power allocations
in the cooperative network, which can be combined with the
decentralized learning-based relay selection. The analysis of the
exact and approximative outage behaviors and the convergence
properties of the proposed algorithm toward a Nash equilibrium
state are verified theoretically and numerically. Simulation results
are also given to demonstrate that the resulting cooperative
network induced by the proposed algorithm achieves high energy
efficiency, transmission reliability, and network-wide fairness
performance.

Index Terms—Vehicular ad-hoc networks, cooperative com-
munication, relay selection, outage probability, energy efficiency,
noncooperative game.
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REcently, vehicular ad-hoc networks (VANETs) have at-
tracted significant research interest because of their po-

tential to leverage many significant telematic applications,
including safety-oriented and entertainment applications, for
traffic information and intelligent transportation systems [1],
[2]. A generalized VANET, also called connected vehicles,
comprises wireless communication links among vehicles and
road-side access points (APs), and supports both vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) communi-
cations [3], [4]. However, due to vehicular mobility, multi-
path propagation, and other time-varying effects, there exists
inherent space time frequency variability in vehicular chan-
nels [5]–[7]. Recent interest in the development of a novel
class of communication architectures to fully exploit diversity
has increased. Cooperative communications have been widely
acknowledged in various communities as a powerful technique
for performance improvement of wireless relay transmission
systems from physical-layer or cross-layer perspectives [8]–
[10]. Emerging cooperative communication technologies sug-
gest broader designs and protocols that can, to some extent,
relax the fast signal fading problem [11].

Generally, cooperative wireless networks have a set of
communication terminals, each having a single antenna and
its own information to transmit. These terminals are spatially
distributed and expected to cooperatively share antennas based
on the typical relay channel model [12], so as to create
a virtual antenna array at the physical layer, which can
achieve spatial diversity (also called cooperative diversity) and
coding gains to mitigate fast channel fading [13]. Coopera-
tive communication systems can provide spatial diversity and
performance enhancement similar to that provided by multi-
antenna systems, such as multiple-input multiple-output (MI-
MO) systems [14]–[16]. In addition, such systems are more
practical to be deployed with existing distributed hardware
and limited resources (e.g., on-board battery and data buffer).
Thus, cooperative communications can motivate novel network
solutions to boost VANET performance in terms of certain
network metrics such as outage probability, network capacity,
and energy efficiency [8]–[11].

Despite many successful application reports about VANETs
integrating cooperative communications, there still exist some
fundamental issues that previous studies have not explicitly
considered and that need to be reconsidered and fully explored
from a more realistic view point. These basic issues primarily
include the following. i) If nodes are assumed to be selfish
and unwilling to cooperate with other transmitters without
any (noticeable) benefit, can cooperative communications still
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be applied? ii) If so, how should this be mapped into the
mathematical design of an appropriate relay selection method?
iii) How will this impact the selection dynamics of cooperative
relays in a network? iv) Is there a desired solution state
whereby the resulting cooperative network can achieve high
performance in terms of not only network metrics but also
fair resource allocation (i.e., benefit equilibrium)? If such a
cooperative network exists, how should such a desired solution
state be represented mathematically? v) What constitutes an
effective algorithm that enables nodes to make cooperation
decisions that depend solely on their historical information and
local network states, such that nodes can learn dynamically and
co-evolve asymptotically to the desired performance state, i.e.,
in a self-organized and distributed manner?

To this end, in this study, we investigate the fundamental
questions raised above, focusing on the decentralized learning-
based self-organized relay selection (DLbSo-RS) mechanism
to leverage a cooperative VANET. We explicitly consider
the selection of multiple relay nodes. Because the decode-
and-forward (DF) cooperative communication protocol has
good scalability in terms of practical implementation and can
provide full second-order diversity [8], [10], [13], we exploit
the DF protocol with multiple relays helping some transmitters
in a VANET. While a cooperative vehicular network has
various performance metrics, we consider terminal energy con-
sumption and transmission reliability. Transmission reliability
is characterized by a QoS-related transmission rate and an
outage probability. More importantly, we present a powerful
formulation, based on the game theory of learning automata
[17], that facilitates mapping the cooperation problem with
respect to resource utilization and interest equilibrium in ve-
hicular networks into a decentralized learning-based decision
making framework.

The remainder of this paper is organized as follows. In Sec-
tion II, our cooperative vehicular network model is presented.
In Section III, we develop the game-theoretic framework and
propose a decentralized learning-based adaptation for the relay
selection decision. We also derive key theoretical properties of
the proposed algorithm under the game-theoretic framework.
In Section IV, we derive our exact theoretical expression of
the outage probability of a multi-relay DF cooperative scheme.
Based on this, we propose an energy-efficiency optimization
model and determine the optimal power allocation for the
multi-relay DF cooperative transmission scheme, which is
integrated with the proposed learning-based relay selection
adaptation. In Section V, numerical results are presented to
validate our theoretical developments and to evaluate the com-
prehensive performance of our method. Finally, conclusions
are drawn in Section VI.

II. SYSTEM MODEL

In this study, we consider VANET wherein a certain
number of vehicles (mobile nodes) are assumed to be u-
niformly distributed in a given road region. Each vehicular
communication terminal is equipped with a single antenna.
We employ repetition-based cooperative diversity, i.e., the
DF cooperative communication protocol [13], [18], such that
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Fig. 1. Two phases of DF cooperative communication with multiple relays in
a VANET. In the first phase, the source nodes (e.g., S1 and S2) broadcast their
information to the corresponding relays (e.g., {R1, R2, . . . , R9}) as well as
to their destinations (e.g., D1 and D2). Then, these relays can re-transmit
the information to the corresponding destinations on orthogonal sub-channels
during the second phase.

vehicular transmitters can exploit spatial diversity to mitigate
signal fading arising from the inherent variability of vehicular
channels across time, frequency, and space. We consider that
this network is associated with a set of source nodes, denoted
by I = {i|i = 1, 2, . . . , n}, and a set of candidate relay nodes,
denoted by J = {j|j = 1, 2, . . . ,m}. Each source i ∈ I
transmits its message to a corresponding destination node
d(i) /∈ I,J with the assistance of some potential nodes in J .
The destination may be either a road-side AP or a vehicular
node. There are mi candidate relay nodes in the neighborhood
of the source i, denoted by the setNi ⊂ J , i.e., |Ni| = mi. We
also assume that any j ∈ J can be a neighbor of several source
nodes. Let the set of j’s neighboring sources be Aj ⊂ I and
its cardinal nj , i.e., |Aj | = nj . Thus, we have j ∈

∩
i∈Aj

Ni,∪n
i=1Ni = J and

∪m
j=1Aj = I. Any j is allowed to

independently determine which source to cooperate with, i.e.,
autonomously selecting a source from Aj , denoted sj ∈ Aj ,
as its service target. Throughout this paper, we focus on
multi-relay cooperative communications, and although there
are algorithmic differences between single and multi-relay-
based cooperations, multi-relay-based algorithms can be easily
extended to single-relay-based cooperative communications.
Thus, assuming that there are multiple relays (from Ni)
serving source i, we define the set of i’s actual relays by Ri,
i.e., i ∈

∩
j∈Ri

Aj andRi ⊂ Ni. We denote the cardinal ofRi

as Ni for any source i ∈ I, i.e., |Ri| = Ni. We adopt a time-
division-multiple-access protocol with Ni + 1 time slots for
the medium access control in the multi-relay DF cooperative
communications to guarantee orthogonal transmissions [19].
In this way, each cooperative node transmits its decoded
information in a fraction 1/(Ni + 1) of the total degrees of
freedom in the channel, which ensures that nodes conform to
the half-duplex constraint and avoid collisions.

In a typical scenario of vehicular cooperative communica-
tions such as Fig. 1, multi-relay DF cooperative communica-
tions operate during two transmission phases. The first phase
consists of the first time slot, in which the source transmits a
signal to its corresponding destination and to the cooperative
nodes (its relays). The second phase consists of the following
Ni time slots, in which the relays repeat the message from
their source in a pre-specified order [19]. Let ai,d(i), ai,j ,
and aj,d(i) be the coefficients that capture the effects arising
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from path loss, shadowing, and frequency non-selective fading
on the i-to-d(j), i-to-j, and j-to-d(i) transmission channels,
respectively. Generally, these channel coefficients aTx ,Rx can
be statistically modeled as zero-mean, independent, circularly
symmetric complex Gaussian random variables with variances
1/λTx ,Rx , such that |aTx ,Rx |2 are exponentially distributed
with parameter λTx ,Rx [8], [10], [11]. Following the literature,
we also assume that the quantities that capture the effects
of noise and other interference at the receiver are modeled
as zero-mean mutually independent, circularly symmetric,
complex Gaussian random sequences with variance σ2

0 . We
denote pTx as the discrete-time transmission power in Joule/
2−D. Thus, the corresponding SNR can be represented as
SNRTx = pTx/σ

2
0 , so that the channel model is parameterized

by such random SNR variables

SNRTx |aTx ,Rx |2 =
pTx

σ2
0

|aTx ,Rx |2 (1)

for any Tx -to-Rx link pair.
With the above channel model, the relay selection in multi-

relay DF cooperative communications is equivalent to con-
structing a proper relay set Ri to help the source i ∈ I and
to optimize transmission power allocation over the source i
and relay set Ri in terms of transmission link reliability or
other network metrics. Without loss of generality, we divide
continuous time into a series of discrete intervals indexed by
t ∈ Z≥0. Each time interval consists of a sequence of time
slots. Throughout this paper, the power level adopted by i (j)
during the time interval t is denoted by pi,t (pj,t), the residual
energy of a node i ∈ I (j ∈ J ) at the end of the time interval
t is denoted as Ei,t (Ej,t), and the maximum transmission
power level at i (j) is pi,max (pj,max).

III. SELF-ORGANIZED RELAY SELECTION FRAMEWORK

A. Relay Selection Game Formulation

To map the relay selection into a multi-player non-
cooperative strategic-form game, we consider that the selection
decision is made from the perspective of the candidate relay
node. That is, the candidate relay nodes in J are treated as
players (i.e., decision makers or automata) and the residual
energy of both sources and relays (after power allocation in
each round of the game) is considered the external state. Note
that players choose an appropriate source. The normal form
of the game can be presented as a four tuple:

G = ⟨C,J ,A,U⟩ (2)

where C denotes the space of the external states, i.e., C =
{ETx ,t|Tx ∈ I ∪ J , t ∈ Z≥0}. J is the player set where j ∈
J is the index of an independent player in the game G. A
represents the discrete finite-action space, which collects all
individual actions, i.e., A = ×m

j=1Aj . Similarly, the action
profiles for all players except j can be represented by the set
A−j = ×j′ ̸=jAj′ . In addition, we denote an action profile
with respect to j as sj = (sj , s−j) and sj ∈ A, where sj
is player j’s action (i.e., sj ∈ Aj) and s−j denotes a vector
collecting the actions taken by the other m − 1 players, i.e.,
s−j ∈ A−j . For any player j ∈ J , we define a utility function

as uj : A → R, which captures j’s preferences over the action
profiles A. U denotes a vector that collects all individual utility
functions, i.e., U = (u1, u2, . . . , um) : A → Rm.

In vehicular interactions, to account for significant changes
in the neighborhood structure, we consider that game G is
played repeatedly, such that it can evolve over time t and
adapt to the decision-making behaviors. In each round of G,
which is also indexed by t, we denote the current action
taken by player j ∈ J as sj,t ∈ Aj and the current action
profile as sj(t) = (sj,t, s−j,t) ∈ A, where s−j,t ∈ A−j . To
facilitate game-theoretic mapping from the selection decision
of self-interest-driven nodes in cooperative communication
interactions to a proper decentralized learning-based decision-
making formulation, we propose a utility function for each
player j ∈ J . In realistic scenarios, due to their selfish and
greedy nature, each player tends to maximize its payoff in
the game G. The player’s payoff specifies the benefit received
from the resulting cooperative network and the cost incurred
by cooperative transmission. Thus, the general form of each
player’s utility function can be formulated as the difference
between the received benefit and the incurred cost, so that
it captures the benefit-cost trade off and maps the player’s
action profile to a payoff. For any j ∈ J , the associated utility
function uj is given as follows:

uj (sj(t)) = fj (sj(t))− gj (sj(t)) (3)

where the function fj : A → R denotes the benefit j can
gain when sj(t) is deployed and gj : A → R denotes the
cost incurred by cooperative communication.

Naturally, the cost incurred by player j in cooperative
communication, gj , can be formulated by capturing the power
consumption level and the individual residual energy. To be
specific, let qj,t = pj,t+psj,t,t be the sum of the transmission
power levels used by j and sj,t. The cost component gj is
given as follows:

gj (sj(t)) = α1qj,t
Qj,0

Qj,t
(4)

where α1 is a nonnegative weighting coefficient, and Qj,t is
the sum of the residual energy of j and sj,t at time t, i.e.,
Qj,t = Ej,t+Esj,t,t (particularly, Qj,0 = Ej,0+Esj,t,0). From
(4), it can be seen that consuming more power, i.e., larger qj,t,
or having less energy remaining, i.e., a smaller Ej,t, leads to
a higher gj , indicating a higher cost incurred in cooperative
communication.

On the other hand, to formulate the component fj , we
characterize the benefit perceived by player j with the link
reliability of the cooperative communication originating from
sj,t, the transmission power capacity, and the degree of energy
utilization balance. A specific fj for each j ∈ J is given by

fj (sj(t)) = Hj (sj(t))

(
α1qj,max

Qj,0

Qj,t
+ α2Wj (sj,t)

)
(5)

where α2 is also a nonnegative weighting coefficient, and
qj,max is defined as the sum of the usable maximum power
levels at j and sj,t, i.e., qj,max = pj,max + psj,t,max, which
indicate the transmission power capability of j and sj,t (Note
that a larger pj,max (psj,t,max) implies a higher transmission
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potential of j (sj,t)). Hj (sj(t)) indicates the transmission
reliability of the resulting cooperative network when the action
profile sj(t) is adopted, and Wj (sj,t) is the average of the
residual energy of j’s local neighboring nodes.

More specifically, we introduce the indicator function

hj (sj,t) =

{
1, qj,t ≥

(
wj,t + wsj,t,t

)
0, otherwise

(6)

and then formulate Hj (sj(t)) as follows:

Hj (sj(t)) =
∏
j∈J

(hj (sj,t)) (7)

where wj,t and wsj,t,t denote the minimum transmission
power level needed at j and sj,t, respectively, to establish
and maintain reliable cooperative transmission. In this paper,
we consider that a QoS requirement (cooperative like quality)
is characterized by a tolerable maximum outage probability
βsj,t and the required transmission data rate (spectral ef-
ficiency) rsj,t (in bits/s/Hz ). Hence, there must exist an
optimal allocation of transmission power levels among the
transmitters {sj,t}∪Rsj,t given that the transmission reliability
requirement is satisfied. That is, wsj,t,t and wj,t are solved
using the following optimization model:

min
p(sj,t)

psj,t,t +
∑

j′∈Rsj,t
pj′,t

s.t.


Pr
(
Isj,t,d(sj,t) < rsj,t

)
≤ βsj,t

psj,t,t ≤ psj,t,max and ∀pj′,t ≤ pj′,max

p (sj,t) =
{
psj,t,t, pj′,t|∀j′ ∈ Rsj,t

} (8)

where Isj,t,d(sj,t) represents the maximum average mu-
tual information between source sj,t and its destination
d (sj,t) in the multi-relay DF cooperative communication,
and Pr

(
Isj,t,d(sj,t) < rsj,t

)
denotes the outage probability

that this mutual information Isj,t,d(sj,t) falls below the QoS-
oriented spectral efficiency rsj,t . Note that the channel average
mutual information is a function of several factors including
the coding protocol, the relay selection scheme for construct-
ing the decoding set Rsj,t , and the fading coefficients of the
channel [13], [18], [20]. Isj,t,d(sj,t) is also a random variable.

In addition, the average residual energy dynamics of the
local neighboring nodes in the network are captured by the
term Wj (sj,t), which is formulated as follows

Wj (sj,t) =
1

|Aj |+ |Nsj,t |

∑
i′∈Aj

Ei′,t

Ei′,0
+

∑
j′∈Nsj,t

Ej′,t

Ej′,0


(9)

By including Wj (sj,t) into the benefit component fj in
(5), player j is rewarded for improving the average energy
utilization level. This means that this player is motivated to
contribute to balanced energy utilization when establishing a
cooperative network while maximizing its own payoff in the
normal game induced by the selfish and greedy nature:

G : max
sj,t∈Aj

{uj (sj,t, s−j,t)} ∀j ∈ J (10)

In addition, from (4-9), we derive the following results to
present the properties of mapping the benefit cost tradeoff to

an instantaneous payoff any player j receives by playing game
G with the individual utility function uj proposed in (3).

Result 1: The indicator function of the transmission reli-
ability of the overall established network, Hj (sj(t)), is a
nondecreasing function with respect to the transmission power
level qj,t. That is, if qj,t ≥ q′j,t then Hj (sj,t, s−j,t) ≥
Hj

(
s′j,t, s−j,t

)
for any j ∈ J where sj,t and s′j,t are two

different actions, and sj,t, s
′
j,t ∈ Aj .

Proof: It is easy to understand that a larger transmission
power, which enhances the transmission signal, usually leads
to better coverage and reduces the probability that a communi-
cation link is impaired or interrupted by signal interferences. In
other words, a higher transmission power level qj,t can result
in a lower outage probability of the transmission link. From
the formulation of the indicator function (6), hj (sj,t) = 1
if and only if qj,t is greater than the minimum power level
required to guarantee the transmission reliability; otherwise,
hj (sj,t) = 0. If qj,t ≥ q′j,t, hj (sj,t) ≥ hj

(
s′j,t
)

holds, then

Hj (sj,t, s−j,t)

= hj (sj,t)
∏

j′∈J−{j}

(hj′ (sj′,t))

≥ hj

(
s′j,t
) ∏
j′∈J−{j}

(hj′ (sj′,t)) = Hj

(
s′j,t, s−j,t

) (11)

Result 2: For any player j ∈ J , the overall reward it
receives from the cooperative network can be positive, i.e.,
uj (sj(t)) ≥ 0, if and only if this resulting network can
maintain the QoS-constrained transmission reliability; i.e.,
Hj (sj(t)) = 1 holds.

Proof: From (5) and (7), it can be easily found that if
there exists at least one player j adopting a certain action sj,t
such that qj,t falls below the minimum power level required to
guarantee the transmission reliability, i.e., qj,t < wj,t+wsj,t,t,
then hj (sj,t) = 0, thereby leading to the overall term
Hj (sj(t)) = 0. The overall payoff of j is reduced to
uj (sj(t)) = −gj (sj(t)) < 0. This means that a player cannot
gain any positive benefit from an unreliable network, even
though it pays the cost gj (sj(t)) in the game G.

In contrast, when Hj (sj(t)) = 1 is satisfied, the overall
payoff of j can be re-expressed as follows:

uj (sj(t)) = α1
Qj,0

Qj,t
(qj,max − qj,t) + α2Wj (sj,t) (12)

Given qj,max ≥ qj,t, it is obvious that uj (sj(t)) ≥ 0. Thus,
in this situation, the player is expected to receive a positive
payoff from the resulting reliable network.

Result 3: With uj (sj(t)), an action profile s′j(t) =(
s′j,t, s

′
−j,t

)
is a NE of the game G if uj

(
s′j,t, s

′
−j,t

)
≥

uj

(
sj,t, s

′
−j,t

)
holds for ∀j ∈ J and ∀sj,t ∈ Aj .

Proof: This result is in accordance with the mathematical
definition of a NE [21]. When no unilateral deviation in the
action adopted by j ∈ J can be profitable for itself, the
associated profile s′j(t) =

(
s′j,t, s

′
−j,t

)
is considered a NE.
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B. Game-Theoretic Analysis

Based on the game-theoretic mapping presented in the
previous subsection, we provide a comprehensive analysis of
the relay selection game G. First, to study the optimal solution
of G in the sense of Nash, we introduce two lemmas.

Lemma 1: If there exists a real-value function U : A → R
such that for ∀j ∈ J , ∀s−j,t ∈ A−j , and s′j,t, s

′′
j,t ∈

Aj , U
(
s′j,t, s−j,t

)
− U

(
s′′j,t, s−j,t

)
> 0 if and only if

uj

(
s′j,t, s−j,t

)
− uj

(
s′′j,t, s−j,t

)
> 0 holds. G is OPG, and

U is the ordinal potential function (OPF) of G [22].
Lemma 2: If the action space of an OPG is compact then

this OPG is guaranteed to possess at least a NE in pure
strategies [22].

These lemmas indicate that an OPG requires variations in
the payoffs of all players and in the potential function having
the same increasing or decreasing direction. Next, we show
that the constructed game G with (3) is an OPG.

Theorem 1: The game G proposed in (10), where each
player’s instantaneous-payoff mapping is specified by the in-
dividual utility function given in (3), is an OPG. An associated
OPF can be formulated as follows:

U (sj(t)) =
∑
j∈J

Hj (sj(t))

(
α1qj,t

Qj,0

Qj,t
+ α2Wj (sj,t)

)
−
∑
j∈J

α1qj,t
Qj,0

Qj,t

(13)

Proof: Suppose that for any player j ∈ J , s′j,t ∈ Aj and
s′′j,t ∈ Aj are two different actions and their corresponding
transmission power levels are q′j,t and q′′j,t, respectively. We
can evaluate deviation in the individual utility function uj

when this player unilaterally changes its action from s′j,t to
s′′j,t as follows:

∆uj = α1qj,max
Qj,0

Qj,t

(
Hj

(
s′j,t, s−j,t

)
−Hj

(
s′′j,t, s−j,t

))
− α1

Qj,0

Qj,t

(
q′j,t − q′′j,t

)
+ α2

(
Hj

(
s′j,t, s−j,t

)
Wj

(
s′j,t
)

−Hj

(
s′′j,t, s−j,t

)
Wj

(
s′′j,t
))

(14)

Similarly, we also derive the deviation in the asserted function
(13) as follows:

∆U = U
(
s′j,t, s−j,t

)
− U

(
s′′j,t, s−j,t

)
= ∆uj +

∑
j′∈J ,j′ ̸=j

[
Hj′

(
s′j,t, sj,t

)
−Hj′

(
s′′j,t, sj,t

)]
×
(
α1qj′,max

Qj′,0

Qj′,t
+ α2Wj′ (sj′,t)

)
(15)

Next, we show the properties of ∆uj and ∆U under two
possible situations: i) q′j,t ≥ q′′j,t and ii) q′j,t < q′′j,t. According
to Result 1, the transmission reliability indicator function
Hj (sj,t, s−j,t) is a non-decreasing function with respect to
the transmission power level qj,t. That is, when q′j,t ≥ q′′j,t,

we have Hj

(
s′j,t, s−j,t

)
≥ Hj

(
s′′j,t, s−j,t

)
. According to the

proof of Result 2,

fj (sj,t, s−j,t) = α1qj,max
Qj,0

Qj,t
+ α2Wj (sj,t)

≥ α1qj,t
Qj,0

Qj,t
= gj (sj,t, s−j,t)

(16)

Note that Hj ∈ {0, 1}. Therefore, it follows from (14) that

∆uj


≥ 0, if q′j,t ≥ q′′j,t, Hj

(
s′j,t, s−j,t

)
> Hj

(
s′′j,t, s−j,t

)
≥ 0, if q′j,t ≥ q′′j,t, Hj

(
s′j,t, s−j,t

)
= Hj

(
s′′j,t, s−j,t

)
< 0, if q′j,t ≥ q′′j,t, Hj

(
s′j,t, s−j,t

)
= Hj

(
s′′j,t, s−j,t

)
(17)

When q′j,t < q′′j,t, i.e., Hj

(
s′j,t, s−j,t

)
≤ Hj

(
s′′j,t, s−j,t

)
, it

follows from (14) that

∆uj


≤ 0, if q′j,t < q′′j,t, Hj

(
s′j,t, s−j,t

)
< Hj

(
s′′j,t, s−j,t

)
≤ 0, if q′j,t < q′′j,t, Hj

(
s′j,t, s−j,t

)
= Hj

(
s′′j,t, s−j,t

)
> 0, if q′j,t < q′′j,t, Hj

(
s′j,t, s−j,t

)
= Hj

(
s′′j,t, s−j,t

)
(18)

Accordingly, the sign of the second term on the right side of
(15) is the same as that of ∆uj for the first case in both situa-
tions, i.e., (17) and (18). For the last two cases, (either situation
(17) or (18)), because the transmission reliability profile Hj

remains unchanged, the second term on the right side of (15)
is equal to zero, which further indicates that ∆U = ∆uj . To
summarize, for all cases of both (17) and (18), the variations in
uj and U due to player j’s unilateral deviation (∆uj and ∆U )
have the same sign, i.e., sgn(∆uj) = sgn(∆U). This implies
that U is an OPF and G is an OPG according to Lemma 1.

Theorem 2: The game G in (10), where each player’s
instantaneous-payoff mapping is specified by the individual
utility function given in (3), has at least a pure-strategy NE
that coincides with a local maximizer of the OPF U .

Proof: This conclusion naturally follows Theorem 1 and
Lemma 2.

C. Learning-Based Relay Selection Adaptation

As shown in [22], the potential maximizers of an OPF
form a subset of the NE of the corresponding OPG.
This implies that to identify the NE of the OPG, we
can solve for the maximizers of the associated OPF,
i.e., maxsj,t∈Aj ,∀j∈J {U (s1,t, s2,t, . . . , sm,t)}. However, it is
quite difficult or even impossible to solve the OPF over a
network because the OPF is a global function that requires
complete information about the global networking individuals.
In real scenarios, the dynamic nature of the vehicular network
leads to the time-varying topological structure of each player
and the decision is made independently by each player in
each play. The absence or impracticality of centralized control
and infrastructure would render some existing algorithms
that require complete network information (e.g., conventional
numerical global optimization algorithms, and better response
algorithms [22]) inapplicable. Thus, we propose a decentral-
ized learning-based self-organized algorithm based on a learn-
ing automata approach (the linear reward-inaction approach
[17]) for each player to learn its own optimal strategy with
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incomplete information. This algorithm can adapt the decision-
making behavior of each player and be applied for networking
players to learn their NE strategies from their individual
action-reward history and the residual energy states of local
neighboring nodes in a distributed manner.

To present the development of the decentralized learning-
based self-organized algorithm, we let a mixed strategy of any
player j ∈ J xj(t) =

(
xj,1(t), xj,2(t), . . . , xj,|Aj |(t)

)T be
the selection probability vector over the action set Aj , where
xj,sj (t) denotes the probability of player j selecting an action
sj ∈ Aj at time t. Then, we update the selection probability
as

xj,sj (t+ 1) ={
xj,sj (t) + δũj (sj,t)

(
1− xj,sj (t)

)
, if sj = sj,t

xj,sj (t)− δũj (sj,t)xj,sj (t), otherwise

(19)

for ∀sj ∈ Aj , where δ ∈ (0, 1) is a learning rate that should be
re-specified sufficiently small, and ũj (sj,t) is an instantaneous
reward that player j receives at the previous time t when it
takes the action sj,t, which is normalized in the interval (0, 1)
and evaluated based on its utility function (3):

ũj (sj,t) =
uj (sj,t, s−j,t)− ulower

j,t

uupper
j,t − ulower

j,t

(20)

where uupper
j,t and ulower

j,t are the upper and lower records of
player j’s utility function up to time t, respectively:{

uupper
j,t = max0≤τ≤t {uj (sj,τ , s−j,τ )}

ulower
j,t = min0≤τ≤t {uj (sj,τ , s−j,τ )}

(21)

The proposed DLbSo-RS algorithm is given in Algorithm 1.
Result 4: In the DLbSo-RS algorithm, the updates given

by (22) and (23) do not change the non-negativity and the
normalization of a probability vector xj(t) (∀j ∈ J ).

Proof: Let x′
j,sj

(t + 1) denote the update in the right
term of (22) for ∀sj ∈ A − Aout

j and x′
j,s′j

(t + 1) denote
the update in the right term of (23) for ∀s′j ∈ Ain

j . Clearly,
x′
j,sj

(t+1) ≥ 0 and x′
j,s′j

(t+1) ≥ 0 because xj,sj (t) ≥ 0 for
∀sj ∈ Aj .

Furthermore, to simplify the expression, let A′
j = Aj−Aout

j

and A′′
j = Aj −Aout

j +Ain
j . It is evident that |A′′

j | = |A′
j |+

|Ain
j |. For A′

j and A′′
j , the equation∑

sj∈A′′
j

xj,sj (t+ 1) =
∑

sj∈A′
j

x′
j,sj (t+ 1) +

∑
s′j∈Ain

j

x′
j,s′j

(t+ 1)

=
|A′

j |
|A′′

j |

∑
sj∈A′

j
xj,sj (t+ 1)∑

s∈A′
j
xj,s(t+ 1)

+

∑
s′j∈Ain

j
1

|A′′
j |

=
|A′

j |+ |Ain
j |

|A′′
j |

= 1 =
∑

sj∈Aj

xj,sj (t+ 1)

(24)

holds, which yields Result 4.
From the linear reward-inaction-based learning approach in

Algorithm 1, it can be seen that a larger reward can result
in a higher selection probability in the next strategic update.
Note that when the selection game is played repeatedly, the

Algorithm 1 DLbSo-RS
1: Initialization: Set the time period index as t = 0, and let

each transmitter Tx ∈ I ∪ J discover its neighborhood,
i.e., setting NTx for ∀Tx ∈ I and ATx for ∀Tx ∈ J .
Then, set the selection probability vector as xj,sj = 1

|Aj | ,
for ∀j ∈ J and sj ∈ Aj .

2: Adaptation: At every t,
1) each player j ∈ J selects an action sj,t based on the
selection probability profile xj(t);

2) according to the selections made by the players, every
source sj,t ∈ Aj can form a relay set Rsj,t consisting
of the players selecting the same action sj,t;

3) based on the optimization model (8), every source sj,t
can solve for the optimal transmission power allocation{
wsj,t,t, wj′,t|j′ ∈ Rsj,t

}
for {sj,t} ∪ Rsj,t ;

4) each source sj,t and its relays j′ ∈ Rsj,t use the
optimal transmission power levels qsj,t,t = wsj,t,t and
qj′,t = wj′,t, respectively, to perform the multi-relay
DF cooperative communication;

5) each player j receives the instantaneous reward
uj (sj,t, s−j,t) specified by (3) and then evaluates the
reward normalization ũj (sj,t) based on (20);

6) each player j updates its selection probability vector
by (19), i.e., deriving a new xj(t+ 1).

3: Update: Each transmitter updates its own residual energy
ETx ,t as well as the set of its local neighboring nodes, i.e.,
updating Ni for ∀i ∈ I and Aj for ∀j ∈ J . In addition,
due to the dynamic topology of the network, the selection
probability vector of each player j, i.e., xj(t+1), should
be further updated as follows (let Aout

j be the set of nodes
that move out of player j’s neighborhood set Aj , and let
Ain

j be the set of the nodes moving into Aj).
1) for ∀sj ∈ Aj −Aout

j , player j updates

xj,sj (t+ 1)←
|Aj −Aout

j |
|Aj −Aout

j +Ain
j |

×

 xj,sj (t+ 1)∑
s∈Aj−Aout

j

xj,s(t+ 1)

 (22)

2) for ∀sj ∈ Ain
j , the player j updates:

xj,sj (t+ 1)← 1

|Aj −Aout
j +Ain

j |
(23)

Then, set t ← t + 1, Aj ← Aj − Aout
j + Ain

j , and go
proceed to Adaptation to repeat the next round of the
game.

players are treated as multiple automata, and the instantaneous
reward is treated as a reinforcement signal to incentivize each
automata to adapt its decision-making behavior independently
and in a distributed manner.

Theorem 3: The DLbSo-RS algorithm converges to a NE
of the game G when the learning rate δ is sufficiently small.

Proof: Denote the mixed strategy profile over J
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by the selection probability matrix X(t), i.e., X(t) =

(x1(t),x2(t), . . . ,xm(t)) ∈ [0, 1]
∑

j∈J |Aj |, and denote a unit
probability vector of the same dimension as that of xj(t)
by ej,sj (t) for each j ∈ J , where the sj-th equals 1 and
other elements equal zero. The mixed strategy profile X(t)
can also be expressed as X(t) = (xj(t),X−j(t)), where
X−j(t) is the mixed strategy profile over J − {j}, i.e.,
X−j(t) ∈ [0, 1]

∑
j′∈J ,j′ ̸=j |Aj′ |. In addition, let ϕj (X(t)) be

the expectation of the instantaneous reward received by the
player j, i.e., ϕj (X(t)) = EX(t) [uj ], and let Φ(X(t)) =
EX(t) [U ] be the expected OPF of the game G. When the
learning rate δ is sufficiently small, it follows previous analysis
[17] by which the linear reward-action learning approach in
(19) can be represented by an ordinary differential equation
(ODE) system (note that the normalization of the probability
vector always holds, i.e.,

∑
s′j∈Aj

xj,s′j
(t) = 1 for t ∈ Z≥0).

In other words, according to [17], the selection probability
xj,sj (t) converges to the solution of the following ODE:

dxj,sj (t)

dt

= xj,sj (t)
∑

s′j∈Aj

xj,s′j
(t)

(
ϕj

(
ej,sj (t),X−j(t)

)
− ϕj

(
ej,s′j (t),X−j(t)

)) (25)

for ∀j ∈ A and ∀sj ∈ Aj . Note that xj,sj (t) is treated as
a continuous-time extension of the discrete-time probability
xj,sj (t) given in (19).

We have Φ(X(t)) =
∑

sj∈Aj
xj,sj (t)Φ

(
ej,sj (t),X−j(t)

)
,

whose partial differential with respect to xj,sj (t) is
∂Φ(X(t))/∂xj,sj (t) = Φ

(
ej,sj (t),X−j(t)

)
. Here, to sim-

plify the expressions, let Φj,sj = Φ
(
ej,sj (t),X−j(t)

)
and

∆ϕj,sj = ϕj

(
ej,sj (t),X−j(t)

)
− ϕj

(
ej,s′j (t),X−j(t)

)
.

Thus, we obtain the derivative of Φ(X(t)) with respect to
t as follows:
dΦ (X(t))

dt
=
∑
j∈J

∑
sj∈Aj

∂Φ(X(t))

∂xj,sj (t)

dxj,sj (t)

dt

=
∑
j∈J

∑
sj∈Aj

∑
s′j∈Aj

xj,sj (t)xj,s′j
(t)Φj,sj∆ϕj,sj

(26)

Similarly, let ∆Φj,sj = Φj,sj − Φj,s′j
and ∆ϕj,s′j

=

ϕj

(
ej,s′j (t),X−j(t)

)
− ϕj

(
ej,sj (t),X−j(t)

)
= −∆ϕj,sj .

The equation (26) above can be rearranged as
dΦ (X(t))

dt
=
∑
j∈J

∑
sj∈Aj

∑
s′j∈Aj

xj,sj (t)xj,s′j
(t)∆Φj,sj∆ϕj,sj

−
∑
j∈J

∑
sj∈Aj

∑
s′j∈Aj

xj,sj (t)xj,s′j
(t)Φj,s′j

∆ϕj,s′j

(27)

Combining (26) and (27) can further yield
dΦ (X(t))

dt

=
1

2

∑
j∈J

∑
sj∈Aj

∑
s′j∈Aj

xj,sj (t)xj,s′j
(t)∆Φj,sj∆ϕj,sj ≥ 0

(28)

The lower bound
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Fig. 2. A sketch of the power consumption bound curve.

where the nonnegativity always holds because, from the prop-
erties of the OPG given in Theorem 1 and Theorem 2, the
signs of ∆Φj,sj and ∆ϕj,sj are always the same, and the
existence of a NE is guaranteed. Φ(X(t)) is shown to be
nondecreasing along the phase trajectories X(t) of the ODE
system. In addition, since X(t) is bounded, Φ(X(t)) is also
bounded. Therefore, according to [17], the convergence of the
DLbSo-RS algorithm to a NE of the game G is guaranteed.

Theorem 4: The NE cooperative network resulting from
the DLbSo-RS algorithm preserves transmission reliability and
its overall power consumption is maintained at the lower
bound of the feasible power solution region.

Proof: As in the DLbSo-RS algorithm, the transmission
power levels used by the transmitters are set as psj,t,t = wsj,t,t

and pj,′,t = wj′,t for ∀j′ ∈ Rsj,t , which can always satisfy the
constraint on the outage probability Pr

(
Isj,t,d(sj,t) < rsj,t

)
≤

βsj,t . This naturally follows the definition of the transmission
reliability indicator function given in (6) in that hj (sj,t) =
1 always holds at each round of the game G, such that the
instantaneous reward each player receives is nonnegative, i.e.,
uj ≥ 0 as shown in Result 2. Thus, the resulting network in
the NE state guarantees transmission reliability.

In the relay selection problem, the relay set Rsj,t construct-
ed at each round of the game G can be treated as a combination
of the candidate relays of sj,t. Let Ψsj,t be the set consisting
of all possible combinations of the candidate relays in sj,t’s
neighborhood Nsj,t , such that Rsj,t ∈ Ψsj,t . At this point,
Ψsj,t indeed contains all feasible relay selection solutions and
is finite. Recall that

{
wsj,t,t

}
∪
{
wj′,t, j

′ ∈ Rsj,t

}
are solved

from model (8), which are an optimal power allocation for
{ss,t} ∪ Rsj,t . In other words, wsj,t,t +

∑
j′∈Rsj,t

wj′,t ≤
psj,t,t +

∑
j′∈Rsj,t

pj′,t holds for a specific Rsj,t . Note that
different relay sets correspond to different optimal power al-
location solutions. Treating Rsj,t as a variable ranging within
Ψsj,t , we can formulate a function of Rsj,t that indicates the
lower-bound of the overall power consumption in a multi-relay
DF cooperative communication system where the source sj,t
transmits to its destination d (sj,t) with the help of the relays
in Rsj,t as W

(
Rsj,t

)
= wsj,t,t +

∑
j′∈Rsj,t

wj′,t. The power
consumption bound curve is given in Fig.2.

IV. ENERGY-EFFICIENT OPTIMIZATION

As presented in the previous section, the transmission power
allocation optimization plays a significant role in the game-
theoretic relay selection method. In this section, we propose
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an outage probability analysis for the multi-relay DF coop-
erative communication system. A closed-form solution of the
outage probability is first derived, and then the optimal power
allocation model is developed.

A. Mutual Information and Outage Behavior Analysis

Rather than introducing additional complications, we use
the notation i ∈ I (Section II) to substitute the notation sj,t
(Section III); the subscript t has been omitted for brevity in
the following analysis. Based on the proposed relay selection
method, each source node i can construct a relay set Ri.
Furthermore, if the SNR of the channel between i and a relay
j ∈ Ri is sufficiently large for this relay to successfully decode
i’s information, then j becomes an active cooperating relay
that can further forward i’s information to the corresponding
destination d(i). Let Di be the set of active cooperating relays
from Ri (this Di can also be called i’s decoding set [19]),
i.e., Di ⊂ Ri. Based on (1), the mutual information between
i and j is expressed as [13], [19]

Ii,j =
1

1 +Ni
log2

(
1 +

pi
σ2
0

|ai,j |2
)

(29)

and the mutual information of the multi-relay DF cooperative
transmission is

Ii,d(i) =
1

1 +Ni
log2

1 +
pi
σ2
0

|ai,d(i)|2 +
∑
j∈Di

pj
σ2
0

|aj,d(i)|2


(30)
Using the law of total probability, the outage probability in
model (8) can be further presented as

Pr
(
Ii,d(i) < ri

)
=

∑
Di⊂Ri

Pr
(
Ii,d(i) < ri|Di

)
Pr (Di) (31)

where Pr (Di) is formulated as

Pr (Di) =
∏
j∈Di

(1− Pr (Ii,j < ri))
∏

j′∈Ri−Di

Pr (Ii,j′ < ri)

(32)
Recalling that |ai,j |2 ∼ exp(λi,j) for any j ∈ Ri, we further
derive

Pr (Ii,j′ < ri) = 1− exp

{
−λi,j

(
2ri(1+Ni) − 1

)
σ2
0

pi

}
(33)

which results in

Pr (Di) =
∏
j∈Di

exp

{
−cλi,j

pi

}
×

∏
j′∈Ri−Di

(
1− exp

{
−cλi,j′

pi

}) (34)

where c =
(
2ri(1+Ni) − 1

)
σ2
0 .

To derive the formulation of Pr
(
Ii,d(i) < ri|Di

)
, we intro-

duce the following lemmas.
Lemma 3: If a random variable X ∼ exp(λ), then kX ∼

exp(λ/k).
Lemma 4: Given that fX(x) and fY (y) are two probability

density functions (pdfs) with respect to the two independent
random variables X and Y , respectively, the pdf with respect

to Z = X + Y is the convolution of their separate density
functions

fZ(z) =

∫ +∞

−∞
fX(x)fY (z − x)dx (35)

Lemma 5: Given that {λk, k = 1, 2, . . . , n} are n real num-
bers that satisfy λk ̸= λk′ for k ̸= k′, equation

n∑
k=1

A(k)B(n, k) = 0 (36)

always holds for n ∈ Z≥2 where A(k) is defined as

A(k) =


0, k < 1 or k > n

1, k = 1
(−1)k−1∏k−1

j=1 (λk−λj)
, 2 ≤ k ≤ n

(37)

and B(n, k) is defined as

B(n, k) =


0, k < 1 or k > n

1, k = n
1∏n

i=k+1 (λi−λk)
, 1 ≤ k ≤ n− 1

(38)

Lemma 3 is indeed a basic property of the exponential
distribution, and Lemma 4 is a direct result of the pdf
definition. More detailed proofs of these two lemmas can be
referred to in most current monographs on probability theory
and statistics. Here, we only detail the proof of Lemma 5.

Proof: Using mathematical induction, we prove Lemma
5 via the following three steps.

1) when n = 2, A(1) = 1 and B(2, 2) = 1 according to the
definitions given in (37) and (38). Thus, the left side of
equation (36) is reduced to

B(2, 1) +A(2) =
1

λ2 − λ1
− 1

λ2 − λ1
= 0 (39)

which always holds.
2) Suppose that equation (36) holds for 3 ≤ n ≤ m and

m ∈ Z≥3, i.e.,
∑m

k=1 A(k)B(m, k) = 0.
3) Following the above supposition 2), we show that (36)

holds for m + 1 as follows. To simplify the expressions,
we first introduce C(n, k) as follows:

C(n, k) =

{
0, k ≥ n or k < 1

1
λn−λk

, 1 ≤ k ≤ n− 1
(40)

From (40),

B(m+1, k) = C(m+1,m)

[
B(m, k)

− C(m+ 1, k)B(m− 1, k)

]
(41)

holds for 1 ≤ k ≤ m. Based on (41), and noting that
B(m+ 1,m+ 1) = 1, B(m− 1,m) = 0 as given in (38),
and

∑m
k=1 A(k)B(m, k) = 0 as given in supposition 2),
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we obtain the following:
m+1∑
k=1

A(k)B(m+ 1, k)

= A(m+ 1) +

m∑
k=1

A(k)B(m+ 1, k)

= A(m+ 1)

− C(m+ 1,m)
m−1∑
k=1

A(k)B(m− 1, k)C(m+ 1, k)

(42)

Note that, from (38) and (40),

B(m− 1, k)C(m+ 1, k)

= C(m+ 1,m− 1)

[
B(m− 1, k)

−B(m− 2, k)C(m+ 1, k)

]
(43)

holds for 1 ≤ k ≤ m− 1.
Substituting (43) into (42) and then using the supposition∑m−1

k=1 A(k)B(m− 1, k) = 0 obtains:
m+1∑
k=1

A(k)B(m+ 1, k)

= A(m+ 1)

+ (−1)2C(m+ 1,m)C(m+ 1,m− 1)

×
m−2∑
k=1

A(k)B(m− 2, k)C(m+ 1, k)

(44)

Similar to (43) and (44), we perform the algebraic trans-
formation m− 1 times and derive the following:

m+1∑
k=1

A(k)B(m+ 1, k)

= A(m+ 1)

+ (−1)m−1
m−1∏
l=1

C(m+ 1,m− l + 1)

× C(m+ 1, 1)

= A(m+ 1) + (−1)m−1
m∏
l=1

C(m+ 1, l) = 0

(45)

where the last equation always holds because A(m+1) =
(−1)m

∏m
l=1 C(m+ 1, l). At this point, (36) always holds

for n = m+ 1. Thus, the lemma is proven.

Theorem 5: Suppose that {Xk, k = 1, 2, . . . , n;n ≥ 2} are
some mutually independent random variables that follow d-
ifferent exponential distributions, i.e., Xk ∼ exp(λk) where
λk ̸= λk′ for k ̸= k′. The pdf of the sum of these random
variables, i.e., Yn =

∑n
k=1 Xk, is as follows:

fYn
(y) =

{
Cn

∑n
k=1 A(k)B(n, k)exp (−λky), y > 0

0, otherwise
(46)

where Cn is defined as Cn = (
∏n

k=1 λk).

Proof: We employ the law of mathematical induction to
prove Theorem 5.
1) When n = 2, it follows via Lemma 3 and Lemma 4 that

equation (46)

fY2(y) =

∫ y

0

λ1λ2exp {−λ2y − (λ1 − λ2)x}dx

= C2

{
A(1)B(2, 1)exp(−λ1y)

+A(2)B(2, 2)exp(−λ2y)

} (47)

holds.
2) Suppose that (46) always holds for 3 ≤ n ≤ m and m ∈

Z≥3.
3) Let Ym+1 = Ym + Xm+1 where Ym and the (m + 1)-

th random variable Xm+1 are mutually independent, and
let Xm+1 ∼ exp(λm+1) where λm+1 ̸= λk for k =
1, 2, . . . ,m. Based on Lemma 4 and the above supposition
2), we obtain

fYm+1(y)

=

∫ y

0

fXm+1(x)fYm(y − x)dx

=

∫ y

0


λm+1exp(−λm+1x)

× Cm

m∑
k=1

A(k)B(m, k)exp(−λk(y − x))

 dx

(48)

Note that
Cm+1 = λm+1Cm (49)

and ∫ y

0

exp(−λm+1x)exp(−λk(y − x))dx

=
exp(−λky)− exp(−λm+1y)

λm+1 − λk

= C(m+ 1, k) [exp(−λky)− exp(−λm+1y)]

(50)

Substituting (49) and (50) into (48) gets

fYm+1(y)

= Cm+1

m∑
k=1

A(k)B(m, k)C(m+ 1, k)exp(−λky)

− Cm+1exp(−λm+1y)
m∑

k=1

A(k)B(m, k)C(m+ 1, k)

(51)

According to B(m, k)C(m + 1, k) = B(m + 1, k) and
using Lemma 5, we obtain

∑m+1
k=1 A(k)B(m+ 1, k) = 0,

which is equivalent to A(m + 1)B(m + 1,m + 1) =
−
∑m

k=1 A(k)B(m+ 1, k). Substituting this result into
(51) further derives

fYm+1
(y)

= Cm+1

m+1∑
k=1

A(k)B(m+ 1, k)exp(−λky).
(52)

Therefore, (46) also holds for n = m + 1, which proves
Theorem 5
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Next, we derive the exact closed-form expression of the
conditional outage probability in (31), Pr

(
Ii,d(i) < ri|Di

)
,

with the following theorem.
Theorem 6: The outage probability conditional on the ac-

tive cooperating set Di, Pr
(
Ii,d(i) < ri|Di

)
, is given as

Pr
(
Ii,d(i) < ri|Di

)
= C|Di|+1

|Di|+1∑
k=1

A(k)B(|Di|+ 1, k) (1− exp(−λkc))

λk

(53)

where c = 2(1+Ni)ri − 1, and let

λk =


λi,d(i)σ

2
0

pi
, k = 1

λj,d(i)σ
2
0

pj
, k = j + 1; j = 1, 2, . . . , |Di|

(54)

and λk ̸= λ′
k for k ̸= k′.

Proof: According to Lemma 3, (pTx |aTx ,d(i)|2)/σ2
0 ∼

exp
{
(λTx ,d(i)σ

2
0)/pTx

}
, given |aTx ,d(i)|2 ∼ exp(λTx ,d(i))

for Tx = i and Tx = j ∈ Di. For simplification,let

Xk =


pi|ai,d(i)|2

σ2
0

, k = 1
pj |aj,d(i)|2

σ2
0

, k = j + 1; j = 1, 2, . . . , |Di|
(55)

Using the notations in (54), the random variables Xk ∼
exp(λk) are mutually independent and non-identically dis-
tributed for k = 1, 2, . . . , |Di|+1. Let Y|Di|+1 =

∑|Di|+1
k=1 Xk.

Hence, the conditional outage probability Pr
(
Ii,d(i) < ri|Di

)
is equivalent to Pr

(
Y|Di|+1 < c|Di

)
, which can be derived

based on Theorem 5:

Pr
(
Y|Di|+1 < c|Di

)
=

∫ c

0

fY|Di|+1
(y)dy (56)

The integral equation (56) directly leads to (53). At this point,
the proof of Theorem 6 is completed.

Combining (34) and (53) into (31) can give the outage
probability Pr

(
Ii,d(i) < ri

)
. Note that the derivation of the

outage probability proposed here does not depend on the
assumption, as usually adopted in the current literature, that
the cooperative transmissions are performed in high SNRTx

regimes (i.e., with consideration of the asymptotical behavior
of SNRTx : SNRTx → +∞). Moreover, we do not assume the
identical transmission power levels. The transmission power
of the transmitters, pTx , can differ. Hence, the exact and
general closed-form formulation of the outage probability (31)
generalizes the evaluation of the multi-relay DF cooperative
communication in regimes where SNRTx is usually non-
asymptotic or finite.

On the other hand, the computation of the outage probability
in (31) may be very complex because the summation in
(31) is carried out over all possible Di. Recall Di ⊂ Ri

and |Ri| = Ni. In total, there are 2Ni different subsets of
Ri, which implies that the summation in (31) must evaluate
2Ni items. Therefore, we consider some specific conditions
that are practical in actual applications and further specify
the corresponding closed-form outage probability or derive
the tight approximation, which makes the computation more
tractable.

Lemma 6: Given that {Xk, k = 1, 2, . . . , n} are some ran-
dom variables independently following an identical exponen-
tial distribution with parameter λ, i.e., Xk ∼ exp(λ) for ∀k,
the sum of these random variables, Zn =

∑n
k=1 Xk, follows

an Erlang distribution with the shape parameter n and the rate
λ, i.e., Zn ∼ Erlang(n, λ), whose pdf is given as

fZn(z) =

{
λnzn−1exp(−λz)

(n−1)! , z > 0

0, otherwise
(57)

Proof: Under the given condition, we can perform the
convolution calculation in (35) (n − 1) times directly, which
results in Lemma 6.

Theorem 7: Given that the channel fading parameters ai,j
from source i to any cooperative relay j ∈ Ri are mutually
independent and identically distributed, i.e., λi,j = λi,j′ for
j ̸= j′; j, j′ ∈ Ri, and the transmission power level used by
i, pi, and by j, pj , can make the fading parameters from i and j
to the destination d(i) satisfy

(
λi,d(i)σ

2
0

)
/pi =

(
λj,d(i)σ

2
0

)
/pj

for ∀j ∈ Ri, the outage probability (31) is given as

Pr
(
Ii,d(i) < ri

)
=

Ni∑
k=0


[
1−

k∑
l=0

(
(cλ)lexp(−λc)

l!

)]

×
(
Ni

k

)
(exp(−λ′c))

k
(1− exp(−λ′c))

Ni−k


(58)

where c = 2(1+Ni)ri − 1, λ′ =
(
λi,jσ

2
0

)
/pi for ∀j ∈ Ri, and

λ =
(
λi,d(i)σ

2
0

)
/pi =

(
λj,d(i)σ

2
0

)
/pj for ∀j ∈ Ri.

Proof: Under the given condition that
(
λi,jσ

2
0

)
/pi are

identical and
(
λi,d(i)σ

2
0

)
/pi =

(
λj,d(i)σ

2
0

)
/pj for ∀j ∈ Ri,

the outage probability Pr
(
Ii,d(i) < ri

)
given in (31) can be

rewritten as follows:

Pr
(
Ii,d(i) < ri

)
=

Ni∑
k=0

Pr
(
Ii,d(i) < ri||Di| = k

)
Pr (|Di| = k)

(59)

According to (32), we derive

Pr(|Di| = k) =

(
Ni

k

)
(exp(−λ′c))

k
(1− exp(−λ′c))

Ni−k

(60)
where c = 2(1+Ni)ri−1. In addition, referring to the notations
in (55) and using Lemma 6, we calculate the following:

Pr(Ii,d(i) < ri||Di| = k) = Pr(

k+1∑
l=1

Xl < c||Di| = k)

=

∫ c

0

fYk+1
(y)dy = 1−

k∑
l=0

(cλ)lexp(−λc)
l!

(61)

Combining (60) and (61) into (59) results in (58).
To reduce the potential computational complexity, an alter-

native method is to adopt appropriate tight approximation on
the computation of the outage probability.

Lemma 7: Given that {Xk, k = 1, 2, . . . , n} are some mu-
tually independent random variables, the probability of
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Xmax = {Xk, k = 1, 2, . . . , n}, Pr (Xmax < x), is given as

Pr (Xmax < x) =
n∏

k=1

Pr (Xk < x) (62)

Proof: The probability Pr (Xmax < x) is equivalent to
Pr (X1 < x,X2 < x, . . . ,Xn < x). As these random vari-
ables are assumed to be mutually independent, this leads to
(62).

Using the same notations given in Theorem 6, we derive two
different lower bounds of the outage probability of the multi-
relay DF cooperative communication in general situations
where the channel fading parameters are mutually independent
but distributed non-identically, i.e., λk ̸= λ′

k for ∀k.
Theorem 8: One lower bound of the outage probability

Pr
(
Ii,d(i) < ri

)
, i.e., Pr lower

1

(
Ii,d(i) < ri

)
, can be given as

Pr lower
1

(
Ii,d(i) < ri

)
=

 ∏
j∈Ri

(
1− exp

(
−cλi,jσ

2
0

pi

)) (1− exp(−cλ1))

+

1− ∏
j∈Ri

(
1− exp

(
−cλi,jσ

2
0

pi

))
×

(
CNi+1

Ni+1∑
k=1

A(k)B(Ni + 1, k) (1− exp(−cλk))

λk

)
(63)

Alternatively, another lower bound Pr lower
2

(
Ii,d(i) < ri

)
can

be formulated as

Pr lower
2

(
Ii,d(i) < ri

)
=

 ∏
j∈Ri

(
1− exp

(
−cλi,jσ

2
0

pi

)) (1− exp(−cλ1))

+

1− ∏
j∈Ri

(
1− exp

(
−cλi,jσ

2
0

pi

))
×

[
Ni+1∏
k=1

(
1− exp

(
− cλk

Ni + 1

))]
(64)

where c = 2(1+Ni)ri−1. In addition, Pr lower
1

(
Ii,d(i) < ri

)
≥

Pr lower
2

(
Ii,d(i) < ri

)
always holds.

Proof: According to (31), it holds that

Pr
(
Ii,d(i) < ri

)
≥ Pr

(
Ii,d(i) < ri|Di = ∅

)
Pr (Di = ∅)

+ Pr
(
Ii,d(i) < ri|Di = Ri

)
Pr (Di ̸= ∅)

(65)

Applying the results in Theorem 6 and (34) to (65) can
immediately obtain (63).

Besides, since

Pr
(
Ii,d(i) < ri|Di = Ri

)
= Pr

(
Ni+1∑
k=1

Xk < c

∣∣∣∣∣Di = Ri

)
≥ Pr ((Ni + 1)Xmax < c|Di = Ri)

(66)

where the random variables Xk are defined as given in
Theorem 6, Xmax = max {Xk, k = 1, . . . , Ni + 1}.

For each k, Pr
(
Xk < c

Ni+1

)
= 1− exp

(
− cλk

Ni+1

)
. Thus,

using Lemma 7 yields the following:

Pr ((Ni + 1)Xmax < c|Di = Ri)

=

Ni+1∏
k=1

(
1− exp

(
− cλk

Ni + 1

))
(67)

Finally, substituting the result of (66) and (67) into (65), and
then, applying (34), we can obtain another lower bound as
given in (64). According to (66), it is obvious that the first
lower bound in (63) is tighter than the second in (64).

B. Optimum Power Allocation for Multi-relay DF Cooperative
Communication

Here, we detail the optimum transmission power allocation
strategy for the multi-relay DF cooperative communication
based on model (8) and the outage probability formulations
presented in the previous subsection. Considering the practi-
cal computation of the outage probability, we focus on the
alternative modeling approaches presented in Theorem 7 and
Theorem 8.

Following the conditions specified in Theorem 7, we de-
note λ′ = λ

(
λi,j/λi,d(i)

)
and pi =

(
λi,d(i)σ

2
0

)
/λ, pj =(

λj,d(i)σ
2
0

)
/λ for ∀j ∈ Ri, and then substitute these results

into (58). We find that the outage probability given in (58) can
be treated as a function with respect to the single parameter λ,
i.e., denoted Pr (λ) = Pr

(
Ii,d(i) < ri

)
. Model (8) is reduced

to the following formation with the single decision variable λ:

min
λ

σ2
0

(
λi,d(i)+

∑
j∈Ri

λj,d(i)

)
λ

s.t.

{
Pr (λ) ≤ βi

max
{

σ2
0λi,d(i)

pi,max
,
σ2
0λj,d(i)

pj,max
, j ∈ Ri

}
≤ λ

(68)

When λ increases, pi and pj decrease for ∀j ∈ Ri, which
can reduce the level of mutual information Ii,d(i) according to
its mathematical definition. This improves Pr

(
Ii,d(i) < ri

)
,

which implies that Pr
(
Ii,d(i) < ri

)
is a monotonically in-

creasing function of λ. At this point, λ can attain its single
maximum value λmax if and only if Pr (λ) = βi. That is, the
optimal decision variable λmax maximizing model (68) can be
obtained by solving the equation Pr (λ)− βi = 0, which can
be easily achieved using many existing highly effective root-
finding numerical methods such as the well-known Newton’s
method, Sidi’s generalized secant method, and Brent’s method
[23].

An alternative way to relax the assumption that the
channel fading is independent and identically distributed
while avoiding complexity when calculating the exact outage
probability, we can adopt the lower bound (63) or (64)
given in Theorem 8 as an approximation of the outage
probability. According to (63) and (64), the lower bound
of the outage probability can also be treated as a func-
tion of the multiple parameters {λk, k = 1, 2, . . . , Ni + 1}.
Thus, let Pr (λ1, λ2, . . . , λNi+1) = Pr lower

1

(
Ii,d(i) < ri

)
or
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Pr (λ1, λ2, . . . , λNi+1) = Pr lower
2

(
Ii,d(i) < ri

)
. A variation

in model (8) can be given as

min
λ1,...,λNi+1

σ2
0λi,d(i)

λ1
+
∑Ni

j=1
σ2
0λj,d(i)

λj+1

s.t.


Pr (λ1, λ2, . . . , λNi+1) ≤ (1− η)βi

σ2
0λi,d(i)

pi,max
≤ λ1

σ2
0λj,d(i)

pj,max
≤ λj+1, j = 1, . . . , Ni

(69)
where the scalar factor η ∈ (0, 1) is introduced to make the
QoS-oriented constraint much tighter because the lower bound
of the outage probability Pr

(
Ii,d(i) < ri

)
is used to make the

computation more tractable when considering general channel-
fading situations (i.e., mutually independent and non-identical
distributed fading).

Note that a feasible power allocation solution satisfying
Pr (λ1, . . . , λNi+1) ≤ βi may not be feasible for the con-
straint on the exact outage probability Pr

(
Ii,d(i) < ri

)
≤ βi

because Pr
(
Ii,d(i) < ri

)
≥ Pr (λ1, . . . , λNi+1). The factor

η should be properly pre-specified to compensate the gap
between Pr

(
Ii,d(i) < ri

)
and Pr (λ1, . . . , λNi+1). It seems

difficult to choose an exact η. However, from the perspective
of actual engineering implementations, the restriction on the
outage probability, βi, is usually pre-defined according to
the QoS requirements of communication applications, which
need not be very exact. A tighter βi can also be adopted to
avoid the violation of QoS-constrained transmission reliability.
The approximation optimization of the transmission power
allocation as presented in (69), makes more sense than the
exact model (8) because it facilitates the practical power
allocation optimization in general channel-fading situations.

Furthermore, similar to Pr (λ) given in model (68),
Pr (λ1, . . . , λNi+1) is also a non-decreasing function with
respect to each parameter λk (k = 1, . . . , Ni + 1). This
implies that the optimum of model (69) can be attained only
when these λk maximize Pr (λ1, . . . , λNi+1) simultaneously.
That is, the optimal solution λ∗

k can be solved using the
equation Pr (λ1, . . . , λNi+1) = (1− η)βi based on existing
numerical methods. The optimal transmission power levels are
then determined immediately as wi =

(
σ2
0λi,d(i)

)
/λ∗

1, wj =(
σ2
0λj,d(i)

)
/λ∗

j+1, j = 1, . . . , Ni.

V. NUMERICAL RESULTS

A. Outage Behavior of Multi-relay DF Cooperative Commu-
nication

In the following simulations we set the QoS-oriented spec-
tral efficiency ri = 1bit/s/Hz for all i. To show the out-
age probability of the multi-relay DF cooperative commu-
nication with different numbers of cooperative nodes under
the independent and identically distributed (i.i.d) channel
condition stated in Theorem 7, we set the relay number
Ni ∈ {1, 3, 5, 7, 9} and λi,d(i) = λj,d(i) = 1 and λi,j = 2
for ∀j ∈ Ri. We then calculate the theoretical outage prob-
ability with each Ni based on Theorem 7. The obtained
results are shown in Fig.3a, which can help us gain a better
understanding of how the number of cooperative nodes and
the normalized transmission power level impact the outage

(a) (b) (c)

Fig. 3. (a)Outage probability of multi-relay DF cooperative communication
for the i.i.d channel case; (b)Outage probability and two tight lower bounds
of multi-relay DF cooperative communication for the non-i.i.d channel case
where the power levels of different transmitters are assumed to be identical;
(c)Outage probability of multi-relay DF cooperative communication for the
non-i.i.d channel case where the power level of any cooperative node differs.

behavior of a multi-relay DF cooperative system. The figure
shows that when given a certain transmission power level
and a specified finite space for the cooperative number (e.g.,
{1, 3, 5, 7, 9}), there exists an optimal number of cooperative
nodes, which can differ at different power levels. For example,
when the normalized power level of source i, pi/σ

2
0 , is

less than approximately 22.5dB (recall that the normalized
power level of other cooperative nodes can be determined by(
λj,d(i)/λi,d(i)

)
×pi/σ2

0 according to Theorem 7), the optimal
number of relays is Ni = 1. When pi/σ

2
0 increases to 25 or

35dB, the optimal Ni is 3 or 5, respectively.
We also analyze the actual outage behavior of the multi-

relay DF cooperative communication system and the two
tight lower bounds under a general channel condition. For
the non-i.i.d. channel case stated in Theorem 8, we set
λi,d(i) = 1 while λi,j and λj,d(i) are generated for each j by
following a uniform random distribution in the interval [1, 2].
Assuming that the power levels of the source and its relays are
identical, we compare these two lower bounds of the outage
probability obtained based on Theorem 8 with the actual one
obtained from the exact closed-form formulation (31) based on
Theorems 5 and 6 as demonstrated in Fig.3b. As can be seen,
even though these two lower bounds are nearly identical, the
first bound obtained by approximation (63) is slightly tighter
than the second obtained by (64), suggesting that it can provide
better approximation of the outage behavior.

Furthermore, fixing Ni at Ni = 2, we generalize the
power levels of source i and relays j to study the outage
behavior under different transmission power conditions as
shown in Fig.3c. As can be seen, the outage probability of
the multi-relay DF cooperative communication is a decreasing
function of the power levels of the transmitters. In other
words, increasing the transmission power of any transmitter
can reduce the outage probability. This fact, as confirmed by
the numerical results shown in Figs.3a, 3b, and 3c, helps solve
an optimal power allocation as formulated in (68) or (69).

B. Evolution of Learning-based Game-theoretic Strategies and
Nash Equilibrium

It is noted that the generalized closed-form expression,
i.e., (31), can be used to evaluate the actual outage prob-
ability of the cooperative transmission system in a general
channel situation (i.e., non-i.i.d. channel cases); however, this
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TABLE I
SIMULATION PARAMETERS

IDM parameters Values
Simulation iterations D 103

Period of each iteration dt 0.01s
Desired speed v0 120.0/3.6m/s
Safe time headway T 1.6s
Acceleration A 0.73m/s2

Deceleration B 1.67m/s2
Minimum spacing Space0 2.0m
Vehicle length la 5.0m
Exponent factor b 4.0
Mobility parameters Values
Initial vehicle speed va(0) N(12.86, 1.5)m/s
Initial inter-spacing Spacea,a−1(0) LN(0.685, 0.618)m
DLbSo-RS parameters Values
Required spectral efficiency ri 1.0bit/s/Hz
Outage probability threshold βi 0.01
Learning rate δ 0.1
Weights α1, α2 1.0, 5.0
Channel parameter λi,d(i) 1.0
Channel parameter λi,j , λj,d(i) U [0, 2]
Maximum power pi,max, pj,max 40.0dB
Initial energy Ei,0, Ej,0 Ddtpi,maxJ
Maximum transmission range 300.0m

may involve significant computational burden. Therefore, for
demonstration, we assume the i.i.d. channel condition in the
following simulations, such that we can calculate the exact
outage probability using the closed-form formulation (58)
given in Theorem 7 with low computational complexity.

Throughout the following simulations, we consider the
transmission reliability constraint by setting the minimum
spectral efficiency required as ri = 1bit/s/Hz and the outage
probability threshold as βi = 0.01 for all i. We also set
λi,d(i) = 1.0 for all i and randomly generate all λi,j and
λj,d(i) for ∀j ∈ Ri by following a uniform distribution in
the interval [0, 2]. The power allocation optimization model
(68) depending on (58) is adopted to determine the optimal
transmission power levels of all i and j. In addition, to
evaluate the game-theoretic framework under VANETs, we
consider a realistic vehicular mobility scenario in urban areas
where vehicles are assumed to move on a two-lane road.
Specifically, we adopt a well-known car-following model to
simulate vehicular mobility, i.e., the intelligent driver model
(IDM), which is widely used for the simulation of freeway
and urban traffic [24]. The IDM is presented by a differ-
ential equation system that describes the dynamics of the
positions and speeds of multiple vehicles moving on a road.
We denote the position, speed, and length of a vehicle a at
time t as xa(t), va(t), and la, respectively. The net distance
between a and the vehicle directly in front of a, a − 1, is
Spacea,a−1(t) = xa−1(t)−xa(t)− la−1, and the approaching
rate is ∆va,a−1(t) = va(t)−va−1(t). The dynamics of vehicle
a can be modeled by the IDM as follows:


dxa(t)

dt = va(t)

dva(t)
dt = A

(
1−

(
va(t)
v0

)b
−
(

Space∗(va(t),∆va,a−1(t))
Spacea,a−1(t)

)2)
(70)

where b is an exponent factor usually set to 4, and

(a) (b) (c)

Fig. 4. (a)Evolution of the mixed strategies of all the 10 players; (b)Evolution
of the normalized reward received by each of all 10 players; (c)Comparison
between the normalized reward resulting from the final steady strategy profile
and that obtained by unilateral deviation from the resulting strategy profile of
each of all 10 players.

Space∗(va(t),∆va,a−1(t)) is defined as follows:

Space∗(va(t),∆va,a−1(t)) = Space0 + va(t)T

+
va(t)∆va,a−1(t)

2
√
AB

.
(71)

Here, v0, Space0, T , A, and B are model parameters that
characterize the desired speed, minimum spacing, desired time
headway between any two neighboring vehicles, maximum ac-
celeration, and comfortable braking deceleration, respectively.

In addition, according to Yin et al.’s [25] statistics-based
study, the inter-vehicle spacing can be well fitted by the log-
normal distribution for free traffic flow during non-peak hours
and the vehicle speed can be modeled by following the normal
distribution. Thus, in consideration of a realistic non-peak-
hour traffic situation, we use the log-normal distribution and
normal distribution to initialize the inter-vehicle spacing and
the vehicle speed at the beginning of our VANET simulations,
respectively. The specific vehicular mobility parameters and
other algorithm-related parameters are summarized in Table
I. Note that the parameters relevant to the IDM and the
vehicular mobility used in our VANET simulations are typical
and adapted from the literature [24], [25].

To verify the proposed game-theoretic relay selection model,
we first generate a set of moving vehicles distributed on the
two lanes, each with seven vehicles. In each lane, two vehicles
are randomly selected as the transmission source nodes, while
the others are treated as relay candidates. Thus, the overall
cooperative VANET consists of four sources (|I| = 4 actions)
and 10 relays (|J | = 10 players). Fig. 4a shows the evolution
of the selection probabilities of all players’ actions (i.e., mixed
strategy) for determining which source to cooperate with using
the proposed DLbSo-RS algorithm. With equal probabilities
at initialization, we can observe that all selection probabilities
can converge to pure strategies before the 400-th iteration. The
dynamics of the normalized reward of each player are shown
in Fig. 4b, which indicates that the comprehensive reward
received by each player increases with a lower initial level
and finally converges to a high level. In Fig. 4c, we show the
unilateral deviation in the decision-making behavior of each
of the 10 players. The results UD obtained by the unilateral
deviation of each player are compared to those NE obtained
from the resulting cooperative network induced by the pro-
posed DLbSo-RS algorithm. As can be seen, the unilateral
deviation leads to lower rewards for all players, suggesting
that a NE state is reached by the proposed algorithm.
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(a) (b) (c)

Fig. 5. (a)Average reward of the resulting cooperative VANET versus the
total relay (players) number for the proposed relay selection method and the
conventional schemes, the error bar denotes the standard deviation of the
average reward; (b)JFI of rewards received by all players from the resulting
cooperative VANET versus the total relay (players) number, the error bar
denotes the standard deviation of JFI; (c)Average residual energy of all
transmitters in the resulting cooperative VANET versus the total transmitter
number, the error bar denotes the standard deviation of the residual energy.

C. Energy Efficiency of Decentralized Learning-based Self-
organized Relay Selection

Finally, to demonstrate the performance of the proposed
method, we conduct a series of Monte Carlo simulations.
Specifically, the vehicles (transmitters) are randomly generated
and distributed in the two lanes by following the log-normal
distribution. The number of source vehicles moving in each
lane is set from 1 to 5, i.e., the total source number |I| is 2 to
10, and the number of relaying vehicles in each lane is set to
be double of the source number in the same lane, i.e., the total
relay number |J | ranges from 4 to 20. Thus, the total number
of transmitters involved in the network ranges from 6 to 30.
In addition, the Monte-Carlo simulations in our experiments
are performed with 100 replications per simulation point
(transmitter number), and the numerical results are shown
with the corresponding standard deviations. For performance
comparison, we compare the proposed method DLbSo-RS
with two representative schemes: stochastic relay selection
SRS and fixed relay selection FRS.

Fig. 5a shows the average energy benefit of players in
the resulting cooperative network induced by the different
relay selection algorithms, which is evaluated by the average
reward of the cooperative network versus different transmitter
numbers. In Fig. 5b, the fairness performance of the different
algorithms is compared under different numbers of transmitter-
s. The fairness of the energy benefit received among multiple
players is measured by the well-known Jain’s fairness index
(JFI) [26]. From these figures, it can be seen that the proposed
DLbSo-RS algorithm outperforms the existing schemes under
different numbers of nodes. Furthermore, as shown in Fig.
5c, we provide a performance comparison by evaluating the
average residual energy of all transmitters in the resulting
cooperative network. As can be seen, a higher level of residual
energy on average can be achieved by the proposed algorithm.

VI. CONCLUSION

In this study, we formulated the multi-relay selection prob-
lem as a non-cooperative game and adopted game-theoretic
analysis to address the self-interest-driven decision-making
issue in VANETs. We proved that it is an OPG and proposed
a decentralized learning-based relay selection algorithm to
construct and adapt the cooperative network in a distributed

and self-organized manner. Numerical results were provided to
prove our theoretical development. Through a series of Monte-
Carlo simulations, the proposed method has been demonstrated
to outperform two typical conventional schemes in terms of
several metrics that indicate the energy efficiency from dif-
ferent perspectives, i.e., energy consumption, energy benefit,
and fairness among nodes. Moreover, all the figures illustrate
that smaller standard deviations, indicated by the shorter error
bars at relevant simulation points, have been achieved by
our method. This implies that the randomness in simulation
scenarios has slighter influence on the performance of our
method, when compared to those of the other two algorithms.
Thus, it is confirmed that our algorithm can guarantee better
reliability in the vehicular mobility scenario.
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