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A Time Efficient Tag Identification Algorithm
Using Dual Prefix Probe Scheme (DPPS)
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Abstract—Tag collision severely affects the performance of
radio-frequency identification (RFID) systems. Most anti-collision
algorithms focus on preventing or reducing collisions but waste
lots of idle slots. In this paper, we propose a time efficient anti-
collision algorithm based on a query tree scheme. Specifically,
the dual prefixes matching method is implemented based on
the traditional query tree identification model when the reader
detects the consecutive collision bits, which can significantly
remove idle slots. Moreover, the proposed method can also
make extensive use of collision slots to improve the identification
efficiency. Both theoretical and simulation results indicate that the
proposed algorithm can achieve better performance than existing
tree-based algorithms.

Index Terms—RFID, anti-collision, tree-based, identification
efficiency.

I. INTRODUCTION

RADIO frequency identification (RFID) is a promising
wireless communication technology for object automatic

identification. A typical RFID system consists of a reader and
many low-cost and small size tags, where each tag with a
unique identifier (UID) is attached to an object and allowed
to be read by the reader through shared channel [1]. However,
multiple tags collision often occurs when more than one
tag respond to the reader simultaneously, which may fail
to identify any of those tags. To tackle this problem, it is
necessary to devise an anti-collision algorithm to identify
multiple tags in a time efficient way, especially in a high dense
RFID environment.

The existing anti-collision algorithms can be mainly divided
into three categories: probabilistic [2-3], deterministic [4-5][8-
12], and hybrid algorithms [6-7]. The probabilistic algorithms
may not guarantee a full successful identification process since
they suffer from the tag starvation problem. For the deter-
ministic case, a recent bit-tracking technology which allows
a reader to identify the locations of collided bit is proposed
and widely used in the latest deterministic query tree (QT)
schemes, such as collision tree (CT) [4], consecutive collision
bit mapping algorithm (CCMA) [5], query window tree (QwT)
[8], its evolution protocols [9], and M -ary query tree (MQT)
[10]. Compared with the traditional tree-based methods, the
above solutions can achieve good performance. However, their
performance highly depends on the distribution of tags’ ID
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Fig. 1. Comparison of (a) traditional algorithm and (b) the proposed
algorithm

and collision bit position. Hybrid anti-collision algorithms
are designed to combine the probabilistic and deterministic
algorithms at the expense of a complex reader and tag design
[9].

In this paper, we focus on the deterministic algorithm and
propose an efficient anti-collision algorithm, namely dual-
prefix probe scheme (DPPS), to improve the identification
efficiency. Based on the dual-prefix scheme, multiple tags can
be identified in one time slot.

An example presented in Fig. 1 (b) illustrates the process
of the proposed DPPS algorithm. In essence, the reader can
probe two tags by using a single query command in a time
slot. Thus the DPPS algorithm can save the identification time
required to read all tags. Moreover, different to the multi-bit
collision arbitration methods [5][10], DPPS can make full use
of collided slot to identify a tag and ultimately eliminate the
idle query caused by M -ary query. Both analytical and simu-
lation results show that the DPPS outperforms the most recent
state-of-the-art QT-based algorithms in terms of identification
efficiency, communication overhead, and system efficiency.

II. THE PROPOSED TAG IDENTIFICATION ALGORITHM

A. System transmission model

The essential idea behind our protocol is to assign two
prefixes with one bit difference to each collided slot. In order
to reduce the number of queries and avoid idle slots, tags will
match their IDs with the dual prefixes received from the reader.
The tags with the first prefix matched will firstly respond to
the reader with their ID without the prefix. Then the tags with
the second prefix matched will respond to the reader with their
ID without the prefix after a r-bits time delay, where r equals
to the length of full ID subtracting the length of the prefix.
If a collision happens, the reader will update the prefix stack
and recursively identify the colliding tags.

Before describing the proposed protocols, we first introduce
the system transmission model between the reader and tags.
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Fig. 2. Structure of commands and the tag’s response

We use the similar transmission model defined in the industrial
standards, i.e., EPC C1 Gen2, and ISO 18000-6B. Fig. 1
also illustrates the link timing of data exchange between the
reader and tags for the traditional tree-based algorithm and
our proposed algorithm, respectively, where T1 is the time
duration from the finish of reader transmission to tag response,
T2 is the time duration from the finish of tag response to
reader transmission, T3 is the readers waiting time, between
successfully receiving the first ID and starting to receive
another ID or issue another command. As can be observed
in Fig. 1, although the time duration of a single time slot in
our scheme is longer than that in other algorithms because
of the additional dual prefix, we will show that the whole
identification efficiency can still be improved.

B. The proposed DPPS algorithm

In this sub-section, we introduce the DPPS algorithm. Same
as other tree-based algorithms [4-5][8-11], the reader keeps a
prefix stack to record and update the required prefix of each
time slot. At the beginning of an identification process, the
reader obtains an initial prefix (called empty string ε) from
the stack, and then broadcasts a CMD INI(ε) to allow all
tags respond to the reader with their full ID. If a collision
happens, the reader updates the stack according to the collided
bits detection mechanism and uses a PROBE EQ(Com Str,
Pre1, Pre2) command to probe tags in the next time slot,
where Com Str denotes the common data part before the first
collided bit of tag ID. The identification process ends until the
stack is empty. Fig. 2 gives the detailed command format and
the corresponding tag response. Note that Pre2=Pre1-1, and
both of their lengths are identical in all cases. It is also worth
noting that since the existing ISO 18000-6B standard supports
the custom command, our proposed method can be built on
it, which ensures its compatibility with the existing standard.

The configurations of Com Str, Pre1, and Pre2 in
PROBE EQ command are decided by the position of
first and second collided bits. Given a binary string
P1P2...Pc−1Pc...Pk, where k is the length of ID, P1P2...Pc−1
is a current prefix, and Pc is the first collided bit, the
reader uses P1P2...Pc−11 and P1P2...Pc−10 as new prefixes
of PROBE EQ command where P1P2...Pc−1, 1, and 0 are
Com Str, Pre1, and Pre2, respectively if first and second
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collided bits are not consecutive. Otherwise, the reader us-
es P1P2...Pc−111 and P1P2...Pc−110 (and P1P2...Pc−101,
P1P2...Pc−100) as new prefixes of PROBE EQ command
with P1P2...Pc−1, 11 (01), and 10 (00) are Com Str, Pre1,
and Pre2, respectively. Since DPPS probes multiple tags
with dual prefixes in a time slot, it significantly reduces the
communication time between a reader and tags. Fig. 3 shows
the flow diagram of DPPS, in which stack is used as a prefix
pool to hold the prefixes for next probe. It is noted that in Fig.
3, we define two new slot types in our scheme:

Half idle slot: A slot with only one of two prefixes matched.
Identifiable collision slot: Even though the reader receives

multiple IDs in a same slot, it can obtain a single ID with a
correct cyclic redundancy check (CRC) checksum.

TABLE I
COMMUNICATION PROCEDURE BY USING DPPS

slot Prefix (Com Str, Pre1, Pre2) response identification

〈1〉 CMD INI (ε) xxxxxxxx Collided
〈2〉 PROBE EQ (ε, 11, 10) 001101 011000 D, C are identified
〈3〉 PROBE EQ (ε, 01, 00) 100100 xxxx1x E is identified
〈4〉 PROBE EQ (00, 11, 10) 0110 empty B is identified
〈5〉 PROBE EQ (00, 01, 00) empty 1011 A is identified

TABLE II
COMMUNICATION PROCEDURE BY USING CT

slot Prefix (Pre) response identification

〈1〉 CMD INI (ε) xxxxxxxx Collided
〈2〉 PROBE (0) xxxxxxx Collided
〈3〉 PROBE (00) xxxx1x Collided
〈4〉 PROBE (000) 01011 A is identified
〈5〉 PROBE (001) 10110 B is identified
〈6〉 PROBE (01) 100100 E is identified
〈7〉 PROBE (1) x0x1x0x Collided
〈8〉 PROBE (10) 011000 C is identified
〈9〉 PROBE (11) 001101 D is identified

Tabs. I and II show an example of the identification process
by using DPPS and CT to identify five tags (A, B, C, D, E),
which have (00001011), (00110110), (10011000), (11001101)
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and (01100100) as tag IDs, respectively. In 〈1〉 of Tab. I,
the reader broadcasts a CMD INI command to allow all tags
respond with their full IDs. After receiving the responses
from tags, the reader detects the first and second bit that are
consecutive collision bits, then the stack is updated according
to Fig. 3. In 〈2〉, the reader probes tags with prefix (11, 10)
where the tag D matches the prefix (11), then it responds with
the rest part of the ID. Since the tag C matches the prefix
(10) during the current time slot, it responds with the rest part
of the ID after a time involved in transmitting length(ID)-
length(prefix) bits in addition to T3, where function length()
represents the effective number of bits. For simplicity purpose,
the length of preamble and CRC16 is not being considered
in the example but included in the simulations. As a result,
tags D and C are identified in the same time slot. In the next
time slot, tags A and B simultaneously respond with the IDs,
which causes a collided slot. Nevertheless, only tag E matches
the Pre1 (01) and is identified in this slot. Tags B and A are
identified in 〈4〉 and 〈5〉, respectively. The DPPS consumes
five slots to identify all tags. As a contrast, the CT algorithm
requires 9 slots to identify the same tags. Although the time
duration of a single time slot in DPPS is longer than that in
CT, the DPPS still saves the communication time and reduces
reader queries. As a result, the whole identification time will
be saved by using our scheme.

It is noted that we consider dual-prefix due to the simplicity
and the tradeoff between the performance and architecture
complexity of tags, however, the proposed method can be
extended to Multi-prefix cases.

III. ANALYSIS OF TOTAL TIME SLOTS

The number of total time slots is a key parameter associated
with system efficiency metric defined as the ratio between
the number of tags and the total time slots required during
an identification process. Specifically, the number of total
time slots Q is the sum of non-idle slots (successful slots,
collided slots and identifiable collision slots) and half idle
slots. According to the principle of DPPS, the expected value
of Q can be expressed as

E(Q) = 1 + C1 + 2C2 (1)

where C1 and C2 represent the occurrence number of single
bit collision and consecutive bits collision, respectively. To
derive the average E(Q), we consider the perfect N-ary tree,
where N is 2k (k=1, 2). The root node is in depth 0 and the
highest depth is dL/ke, where d∗e represents rounding up to
an integer, L denotes the length of tag ID. All leaf nodes exist
in depth dL/ke and the number of them is 2L−k. Let P k

col

denote the probability that a node in the perfect N-ary tree
is selected as a collided node in the N-ary query tree. By
summing up P k

col for all nodes except leaf nodes in perfect
N-ary tree, Ck can be derived as

Ck (k = 1, 2) =


1
2

dL/ke−1∑
H=0

(
2kH−1∑
j=0

P k
col

)
, if n > 1

0, otherwise

(2)

Obviously, if a node is a collided node, it has more than
one descendant. Let P(i, H) denote the probability that a node

in depth H has i descendants among n tags. Then P k
col can be

expressed as

P k
col (k = 1, 2) =

 1−
1∑

i=0

P k
(i, H), if 1 ≤ H ≤ dL/ke − 1

1, if H = 0
(3)

P(i, H) corresponds to the probability that i tags have the same
prefix of (L−kH) bits and (n−i) tags have different prefixes
from i tags. Therefore, P(i, H) can be written as

P k
(i, H) = Ci

n ×
Ci

2L−kH

Ci
2L

×
Cn−i

2L−2L−kH

Cn−i
2L−i

(4)

In this paper, we consider the following two special cases.
Case 1: the first and second collision bits are not consecutive
(single bit collision), then the identification tree called 2-
ary query tree; Case 2: the first and second collision bits
are always consecutive (consecutive bits collision), then the
identification tree called 4-ary query tree. Considering Case
1 and Case 2, we derive the following lemmas:

Lemma 1: If the number of tags to be identified is n, then
E(Q) under Case 1 is n.

Proof : According to the analysis in [4], C1 is equal to n−1.
Hence, the E(Q) in our proposed algorithm can be given as

E(Q) = 1 + C1 + 0 = n (5)

Lemma 2: If the number of tags to be identified is n, then
the E(Q) under case 2 is (2n+ 1) /3 ≤ E (Q) ≤ 2n− 1.

Proof : We consider the perfect 4-ary tree, where the
number of internal nodes is Ni, each internal node has four
descendants, then the number of E(Q) = 4Ni+1. Obviously,
a collision node most likely to produce 2 idle nodes or at least
0 idle node in Case 2. Since E(Q) = n + NE + Ni, where
NE represents the idle nodes in 4-ary tree, when a collision
node produces two idle nodes, NE = 2Ni, substituting NE

into E(Q) gives Ni = n− 1. According to Eq. (1), the E(Q)
can be expressed as

E(Q) = 1 + 2 (n− 1) = 2n− 1 (6)

When a collision node produces 0 idle node, according to
the above analysis, we have Ni = (n− 1)/3. Thus, the E(Q)
can be written as

E(Q) = 1 + 2Ni = 1 + 2(n− 1)/3 (7)

From (6) and (7), lemma 2 can be yielded.
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Fig. 5. Simulation results: (a) system efficiency (b) identification efficiency (c) communication overhead

Fig. 4 shows the total time slots required to identify n tags.
As can be seen the DPPS consumes the minimum number of
slots. Moreover, the simulation result is closed to the analysis
result. Considering the disparity in duration of time slots, we
propose a new performance metric in the simulations.

IV. SIMULATION RESULTS

We evaluate the system efficiency, identification efficiency,
and communication overhead of the proposed DPPS algorithm,
and compare its performance with existing state-of-art QT-
based methods and hybrid method, including CT [4], CCMA
[5], MQT [10], and ImATSA [6] over extensive Monte Carlo
simulations. A reader and a number of tags ranging from 20
to 1000 with the step of 20 are assumed in the simulation.
A non-impaired channel and no capture effect are also as-
sumed to guarantee the fairness of comparisons. During the
simulation, 96 bit tags-ID are randomly generated. The data
rate is 40kbps. T1, T2, and T3 are set as 25, 25, and 12.5
microsecond, respectively. The performance superiority of the
proposed DPPS is robust under these simulation parameters.
The identification efficiency can be expressed as

η = (n · TID)/(Q · TCMD + S · TDATA +W · TEXT ) (8)

where n is the number of tags waiting to be identified, TID is
the time duration for transmitting tag ID. Q is total slots for all
tags identified and S is the number of non-idle slots. TCMD

and TDATA are the time duration for transmitting commands
and valid messages. W denotes the number of half idle slots.
TEXT denotes the required time duration of a half idle slot.
The parameters, i.e. Q, S, and W in Eq. (8) are counted by
the reader during the identification process.

Fig. 5 (a) depicts the comparison of traditional system effi-
ciency between reference methods and DPPS. We can observe
that almost all algorithms can achieve a system efficiency of
more than 0.5. Among these algorithms, the efficiency ranking
from the highest to the lowest is DPPS, MQT, ImATSA, CT,
and CCMA. Fig. 5 (b) shows the identification efficiency of
various algorithms. It is clear that the DPPS also performs the
best among the existing approaches. It achieves an average
of 0.4336, whereas CT, CCMA, ImATSA, and MQT achieve
0.3186, 0.3347, 0.3703, and 0.3809, respectively. Furthermore,
the performance of DPPS is stable in different evaluation
metrics. For example, although the total slots of CCMA is
more than that of CT, the identification efficiency of CCMA

is better than that of CT since the disparity nature between slot
durations. Fig. 5 (c) depicts the transmitted bits for one tag
identification, that is, the average communication overhead.
Although DPPS adds more bits into a slot for dual tags
identification, it still achieves a low average communication
complexity, that is, a reduction of 35.6%, 29.2%, 16.9%, and
13.7% over CT, CCMA, ImATSA, and MQT, respectively.

V. CONCLUSION

In this paper, we have proposed a novel query tree scheme
based on dual prefixes for identifying multiple tags simulta-
neously. The DPPS makes effective use of identifiable colli-
sion slots to improve the identification efficiency. Theoretical
analysis and simulation results have shown that the DPPS
can significantly improve identification efficiency and reduce
communication overhead in a multi-tag identification process
compared to other competitive algorithms.
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