
Bewl

a programming language for topos theory

more precisely, a Scala DSL 
for the Mitchell-Benabou internal language of a topos, 
with some topos implementations



Summary

About me

Topos theory: a promising conceptual tool for 
escaping the limitations of set-based math

It needs a "four function calculator": 
this is why I wrote Bewl

Engineering compromises: 
Topos theory on a finite machine

What can Bewl do so far?

Future directions



About me, Felix Dilke

I'm not an academic

I'm a software developer on SpringerLink 
(link.springer.com)

Bewl is my 10% time project at Springer Nature

I've presented it to my colleagues, who are experienced 
real-world software developers with an interest in science

So, this talk will be informal, even impressionistic, 
with many speculative analogies between software and math, 
and I apologize in advance to domain experts if I seem to 
be making wild claims.

Bewl is test-driven Scala code, open source on GitHub

http://link.springer.com/


The limitations of set-based math

A whole talk in itself, but briefly:

Colin McLarty's book on topoi has led me to see set theory 
as a legacy platform like MS-DOS (!) with many limitations 
and anomalies which topos theory can explain and perhaps 
alleviate. Examples:

Large cardinals: a theory peculiar to sets, 
with unclear application to mainstream math.

Ultrafilters: chimerical objects

Permutation parity: an unexplained feature of the topos of sets 
(another motivation for Bewl was to explain parity).



Topos theory

A topos is a category with all the optional extras - 
finite products, equalizers, exponents, 
subobject classifier

Inside a topos, one can define algebraic structures, 
quantifiers and a near-classical internal logic. So the 
topos becomes a workspace in which one can do math.

A topos is an abstraction of the category of sets 
(the usual foundation for math) and shows how to do much 
of the same work in a much wider context.

Driving metaphor: a topos is a "virtual machine, for math"

Definitions, constructions, theorems "run" in a topos just as 
apps run on a VM, or SQL statements run on a database



The promise

Cleanly separate language from implementation 
(just as webdesigners separate HTML from business logic)

A lot of math can easily be "refactored" to apply 
in a much wider context

Example: Schur's lemma (that the endomorphisms of a 
simple module form a division ring) can be expressed 
in topos-valid form

Understand and escape limitations of set-based reasoning



Examples of topoi

Sets. Also finite sets (foundational for Bewl)

Smooth sets (a workspace for synthetic differential geometry)

The effective topos (a workspace for computability)

Sheaves (workspaces for algebraic geometry)

Fuzzy sets (with equality taking values in a Heyting algebra)

Diagrams of a given shape:

graphs 
automorphisms 
monoid actions



Example: Schur's lemma

In an arbitrary topos, it's still true that endomorphisms 
of a simple module form a division ring

Define a ring R as an object with arrows *: R x R -> R, 
unit: 1 -> R, subject to certain laws as arrow equalities

Similarly an R-module has an abelian group structure and 
conditioned scalar multiplication **: R x M -> M

"M is simple" is then expressed using a quantifier over M: 
all submodules of M, i.e. subobjects of M obeying certain 
closure laws, are equal to either 0 or M

One can then formally construct the ring of endomorphisms 
as a subobject of the exponential object M ^ M, and show it 
obeys a law "for all x, either x = 0 or x has an inverse" in 
topos terms, making it a division ring.



Example: Schur's lemma (2)

The details of all this involve the Mitchell-Benabou internal 
language, which interprets logical formulas as statements about 
equality between arrows in the topos. A soundness result 
formalizes the proof as pure symbol-manipulation.

So now we have Schur's lemma for graphs, sheaves, 
fuzzy sets, monoid actions, etc.

We've also separated the language (abstract strings of symbols) 
from the implementation (specific topoi).

Arguably, this yields a cleaner and more definitive 
version of the original result.



Refactoring math

Large blocks of math translate similarly without much change. 
As a more elaborate example, one can do the same for the Los 
ultraproduct theorem (Volger 1975).

Once can also do topology in a topos, using Manes' theorem 
(the algebra of compact Hausdorff spaces) as a starting point.

This points to an ambitious, Hilbertian program to refactor 
math - realized, I believe, in homotopy type theory (HoTT)

Bewl is just a DSL ("four function calculator"), but 
already many of its library methods are software versions 
of definitions and constructions from topos theory.



Aggressively refactoring the foundations of
math:

Obstacles:

Topos logic is intuitionistic, i.e. allows 
multiple truth-values and no excluded middle

Much classical math is irretrievably Boolean and 
can't easily be rewritten this way 
Example: number theory

Basic concepts like finiteness and the real 
numbers don't have immediately clear analogues

There are potential answers to these, and they involve 
fascinating conceptual questions (see HoTT).

But most of all: How do you do the calculations?



Example: music theory

"The Topos of Triads", Thomas Noll, 2005

(paper on CiteSeer)

"The Topos of Music", Guerino Mazzola, 2002

(a book on SpringerLink)

Noll explores music theory by defining a "triadic monoid" 
and working in the topos of actions over it.

He had to do all these calculations by hand, for example 
enumerating topologies on the triadic topos.

Bewl can now do many of these computations itself. 
In particular, I verified that the C major chord 
(modelled as an object in Noll's topos) is not injective.



Engineering challenges

To model topoi on a finite computer, various 
compromises and trade-offs were needed.

Although this isn't an iron rule, Bewl's topoi are 
locally finite, i.e. every |Hom(A, B)| < ∞

Digression: It turns out that this condition on a topos 
implies it has unique injective hulls. This result seems 
new. I wrote it up as a pure math paper on arXiv

Bewl also caches products and exponents. For objects A 
and B, A x B and B ^ A are computed just once.

The word "object" is overloaded in computing, so in Bewl, 
there are "dots" and "arrows".



Engineering challenges (2)

I use the 'cake' pattern to define a trait Topos as a 
stack of traits adding helper methods on top of BaseTopos

For example, Bewl can calculate coproducts and 
coequalizers from the other topos operations. 
This is a verbatim transcript of constructions 
in McLarty/Moerdijk & Maclane from pure math into software.

Every dot in Bewl has a type attached to it. So a DOT[T] 
can be loosely thought of as ranging over values of type T. 
Functions of type T => U are easily interchangeable with 
arrows T > U (Scala sugar for the Bewl type >[T, U]).

The main difference between functions and arrows is 
that arrows know their source and target, and can be 
compared for equality.



Engineering challenges (3)

Scala was an almost perfect fit because of its terse 
style, expressive idioms, and advanced type system. 
(I first tried writing Bewl in Java, then Clojure)

For example, if dotA is a DOT[A] and dotB is a DOT[B], 
we can construct a new arrow like this:

val arrow: A > B = 
    dotA(dotB) { a =>  
        // ... 
        <expression of type B> 
    } 

We can also apply arrows directly as if they were functions:

val a: A = ... 
val b: B = arrow(a) 



What are the values over which a dot ranges?

A topos object (or "dot") in Bewl is a DOT[A], and 
calculations with it involve manipulating values of 
type A, as if the dot somehow ranged over values 
of type A. But dots are not sets, and don't have 
elements.

These values have meaning only inside the scope 
of an arrow definition. It's all consistent with 
the very precise definition of the internal language 
as described in McLarty's book.

An earlier version of the DSL interpreted the values 
a: A of a DOT[A] as arrows R > A, for some "domain of 
definition" object R. Now they are pure syntax.



Tight integration

Scala supports expressive DSLs

Some quite involved categorical calculations - for 
example, the tensorial strength axioms for strong 
monads - can be described elegantly in Bewl.

I've considered even deeper integration of the DSL with 
the language, using Scala implicit magic to make types 
interchangeable with dots, and functions with arrows.

In summary, this all works a bit like the (mythical) 
"""category Hask""", as a meeting ground of software 
with math.



Truth values

Since the topos may not be Boolean, Bewl 
has a type called TRUTH which essentially 
generalizes Boolean.

The 'subobject classifier' in a topos is 
a DOT[TRUTH].

Bewl autocalculates the logical operations 
on TRUTH values (and, or, implies, not) so you 
can do the equivalent of Boolean algebra.

In fact, as the subobject classifier of a 
topos, DOT[TRUTH] is endowed with the 
structure of a Heyting algebra.

Which brings us to algebraic structures in Bewl.



Algebraic structures in Bewl

The DSL lets you define these yourself, using 
off-the-peg operations (+, ~, etc) with known arities.

Example: Here's the definition of a commutative magma, 
a structure with one binary operation and one 
algebraic law:

    val commutativeMagmas =  
        AlgebraicTheory(*)(α * β := β * α) 
    case class CommutativeMagma[T]( 
        override val carrier: DOT[T], 
        op: BinaryOp[T] 
    ) extends commutativeMagmas.Algebra[T] 
        (carrier)(* := op) 

The library includes definitions for monoids, groups, 
rings, actions, modules, lattices and Heyting algebras.



Algebraic structures (2)

Definition of a group in Bewl:

lazy val groups = AlgebraicTheory( 
    ι, ~, * 
)( 
    "left unit" law ( ι * α := α ), 
    "right unit" law ( α * ι := α ), 
    "left inverse" law ( (~α) * α := ι ), 
    "associative" law (  
        (α * β) * γ := α * (β * γ )  
    ) 
) 

As in the previous example, there's also a case class 
Group to add syntactic sugar.



Algebraic structures (3)

There are helper functions for building structures:

  private val (i, x, y) = ('i, 'x, 'y) 
 
  val monoidOf3 = 
    monoidFromTable( 
      i, x, y, 
      x, x, y, 
      y, x, y 
    ) // right-dominant on two generators 

Bewl can also extract the group of units from a monoid.



Algebraic structures (4)

Actions and modules are slightly more involved - they 
define a new structure within the context of an 
existing one (monoids / groups and rings, 
respectively). The DSL caters for this via a 
concept of 'auxiliary scalars'.

There are methods to calculate endomorphism monoids 
and automorphism groups, as algebraic structures in 
the topos.

The library could be extended to add many familiar 
algebraic constructions (e.g. abelianizing a group) 
which translate naturally in Bewl.



Topos implementations

Implementing topoi in Bewl is nontrivial.

There are four built-in implementations:

Finite sets

The topos of actions of a monoid

The topos of actions of a group

The topos of automorphisms



Topos implementations (2)

The last three all work inside an existing topos.

So if Ɛ is a topos, we can construct a new topos 
Aut(Ɛ) consisting of all the dots-with-a-single- 
automorphism in Ɛ.

Similarly, if M is a monoid object in Ɛ, we can 
construct the topos of all objects A in Ɛ that 
come with an action of M, i.e. an arrow 
A x M > A subject to the algebraic laws.

Exponentials, the subobject classifier, logical 
operations on truth values, etc will all be 
computed automatically.



Sample helper methods

Calculating the "name" of an arrow (see McLarty):

    trait Arrow[S <: ~, T <: ~] ... { 
        ...     
        final lazy val name: UNIT > (S → T) = 
          (source > target).transpose(I) { 
              (i, x) => arrow(x) 
          } 
    } 

From the same class, a method to tell if an arrow is epic:

    final lazy val isEpic: Boolean = 
      target.exists(source) { 
        (t, s) => target.=?=( 
          t, arrow(s) 
        ) 
      } toBool 



Sample helper methods (2)

Similarly concise, generic library code uses the 
DSL to compute:

is an arrow monic / epic / iso?

the inverse of an arrow, if it has one

is an object injective?

Coterminator (0), coproducts, coequalizers

the arrow to any object from 0

epi-mono factorizations

These work in any topos and for me, are a major 
proof-of-concept validation for Bewl.



Performance

Better than you'd think, although there are no 
grounds for complacency. Simple calculations 
with small sets and monoid actions are fast.

I have largely managed to write code that is clean, 
efficient and DSL-compliant, thanks to the caching of 
common operations such as product and exponent.

Most of the required optimizations don't break any 
abstract layers and have been neatly packed away into 
'driver extensions' for specific topoi.



Performance (2)

Remaining pain points:

Quantifiers

Computations with monoid actions

The latter were much improved by a special algorithm 
which efficiently calculates a presentation for a monoid 
action (!) so that Bewl can enumerate morphisms between 
two actions. This is obviously specific to sets.

The algorithm depends on a useful, but very elementary, 
criterion for finite generating sets of an monoid action.



Who might use this project?

Bewl definitely needs users. Some possible interest groups:

People who want to use it as a learning aid to understand 
category theory. On the GitHub repo, I explain how to quickly 
set up a command-line REPL for this.

Music theorists, continuing the Noll approach

Monoid and semigroup theorists, to explore the possibilities 
of topos-theoretic reasoning with actions

anybody who understands both Scala and topoi, and wants to 
contribute or deepen their understanding!



Future directions

There is much more to do, but I'd especially like to add

support for Lawvere-Tierney topologies and sheaves

construct the topos of coalgebras for a left exact monad

construct the double-exponential monad for an algebra

These are in principle fairly mechanical, and perhaps the 
hardest part is to set up decent test fixtures.

Volunteers welcome!



Future directions (2)

So many promising possibilities, so little time.

http://github.com/fdilke/bewl

THANK YOU

http://github.com/fdilke/bewl

