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Abstract

This Letter studies the dynamics of infectious diseases which are spread geographically through long-distance travel between
two regions and subsequent local redistribution through a process of diffusion. A particular case of an equiproportionate travel
is considered, and the model describes migration rather than short visits. We examine uniform and nonuniform steady states
together with their linear stability. Numerical simulations are performed to illustrate the evolution of initial distribution of pop-
ulation towards its final stage, which is represented by uniform distribution of the total population among infected individuals.

0 2005 Elsevier B.V. All rights reserved.

PACS:87.19.Xx; 87.23.Ge

Keywords:Epidemic spread; Spatial diffusion

1. Introduction Laplacian diffusion terms to the ODEs that model the
temporal dynamicf2-6]. In this framework each sub-

In modelling a spread of infectious diseases a sig- population has to be considered .sepgrately in order to
nificant role is played by the geographic motion of € Properly represented by the diffusion moig}!
individuals. Several approaches have been developed Diffusion-type models are usually applied when
to incorporate this important feature in the analysis. € spread of disease is mainly characterized by lo-
One of them assumes individuals to move randomly cal contacts between individuals. At the same time,
and therefore models their spatial distribution in terms It can be advantageous to allow for nonlocal diffu-
of Fickian diffusion, i.e., when the population flux is SN which can lead to contacts between susceptible

proportional to the concentration gradidit. Under individuals at one place with infected individuals at
this assumption, diffusion is approximated by adding anothef7—8]. This mechanism is usually represented
by contact functionals, which have the form of integral

operators with kernels describing the probabilities of
E-mail addressblyuss@maths.ex.ac.¢K.B. Blyuss). motion between different points in the dom#10].
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A review of the diffusion processes as described by the  If one assumes that the transmission of infection

formalism of contact distributions can be found in the occurs in a close contact (i.e., a susceptible can ac-

recent work by Rass and Radcliffel]. quire infection only after a contact with some infected
Recently, additional attention has been paid to individual located at the same point) and there is no

models which include populations residing in more latency period, then a general model for the spatial

than one region with the possibility of travel be- spread of epidemics in two populations can be writ-

tween the regiong§12,13] These models incorpo- tenin the form

rate the process of mobility of individuals explicitly,

thus avoiding the necessity to justify the Markov- —— = F5(S111) + (K7 #S1) — S1(Kip+ 1)

ian character of mobility. It is worth noting several s

works devoted to stochastic modelling of the spread | + (KZl* SZ)

of epidemics in social networks as well as in world- 911 ; I I

wide transport networks (sg@#4-16]and references ot F1Gu 1) =l (K la) —1(Kpp 1)

therein). These results are particularly important in + (K2’1 * |2),

view of recent outbreak of severe acute respiratory dis- 1

ease (SARS) and its global sprgad, 18] Still, these vl rli+ (Kf % R1) — Ri(K{H+ 1)
models do not take into account spatial structure of the R

populations. + (K21 % Re),

In this Letter we propose a basic model which 932 s s s
. . N — = , K — K 1
incorporates mobility of individuals between two re-  ar (8212 + (K2 S2) = 2Kz 1)

gions and their redistribution inside those regions. +(Kfz* Sl),

Travel between the regions is governed by integral

operators describing the probability of travel between —= = f/(Sp,12) — rlo+ (K3 % 12) — I2( K3, % 1)
two particular locations in two regions. Local distrib- /

ution of individuals inside their respective regions is +(K1p#11),

described by the diffusion operators. Our model con- dR2 R R

siders migration rather than short-visit travel, which §: rlz+ (K3 *Ro) — Rp(K2 x 1)

means that after tr.avel to another region individuals + (Kfz* R1). (1)

are assumed to reside there and are considered as a part ] )

of population in that region. We will study equilibria  HereSi, 1: andR; are the vectors of susceptible, in-
of the model and their stability, as well as perform di- fect.ed and rec;overed |qd|y|duals, respectively, In both
rect numerical simulations of the model. In particular, €gions. In this model it is assumed that the disease
we shall consider a case when the model admits only confers permanent immunity, i.e., after individuals re-
uniformsteady states of which one is the unstable un- cOVer, they move to the clag®; and never become

infected state and the other is a stable infected state. Susceptible again. Recovery rate satisfigs 0. The
cases of cross-immunity against different strains and

temporary immunity can be easily incorporated in the
2 Model derivation model. The functiong’s and f! represent the dynam-
ics of a disease transmission and include information
Consider the population residing in two one-dimen- about _the disease transmission rate, patterns of social
sional regions, namely2; and 2, of sizesL; and ~ Pehaviour, etc. . _
L, respectively. We divide the populations into three  Spatial dynamics of the disease spread is governed
classes of susceptible, infected and recovered, with PY local and nonlocal diffusion terms. Inside the re-
spatial densities being (x;, 1), 1; (xi, ) andR; (x;, £) gions a 'dlffu5|on o;‘}r)edlwduals is described by the
correspondingly, in a region, i = 1, 2. Densities of ~ convolution termsK;,"" as
the total population in the two regions aMg (x1, 1)
and Nz(x2, ). The total population in both areas is (K} x S;)(x,1) =/Kf(x,~,x)Sl~(x,~)dx,~,
TP(t) Zf-Ql N1(x1,1) dx1+f92 No(xz,1)dxo. o
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K] (xi, 01 (xp) dxi,

(K} *I,-)(x,t):/
£2;

(Kl-R*R,-)(x,t)=/KiR(x,-,x)Ri(xi)dx,-, i=12.

@ )

We assume that there is no long-distance travel inside
each region, and the population is spread through the

local diffusion only. This assumption is represented
formally by choosing the kerneIKiS’I’R(x,-,x) to be
of the form

S,I,R S,I,R
K77 (xi, x) = D7 8ax (x — xi),

i
DR >0, (3)
wheres (x) is the Dirac delta-function, anp»"* are
diffusion coefficient of susceptible, infected and re-
covered individuals in each region. After substitution
into (2) this gives
(kS +S)=DjAs,
(KX +R;) = DR AR;.

(k! x1;) = D} Al,,

4)
For the sake of generality we allow for all diffusion
coefficients to be different, even though in concrete ex-
amples it possible to simplify consideration by taking,
for instance Dj = D5 = DF = DX andD! = DJ.

In a similar way, K3, and K5;"® describe the

proportion of individuals travelling from region 1 to
region 2 (and from 2 to 1, respectively):

(K35 R % ) (xo 1) = / K5I (x1, x2) g (x1) doxt,

21
(KSR 4 g) (en. 1) = / KSR (x, x1)g (x2) dxz, (5)
§22

for any smooth vector-functiog. Next, one can as-
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in exactly the same way as the susceptible individuals
do. With these assumptions one obtains

(Kls2 * g)(xz, 1) = P

/g(m) dx,

21
S w
(K21*g)(X1,t)=L—lfg(n)dxz,
22
1 S
K1, =0K75,

R _ oS
Ki5= K7y,

[
K31 =0Ky,

K31 =K3). (6)
We consider the model with no vital dynamics, i.e.,
without births or deaths, either natural of from a
disease. For the sake of simplicity, the populations
of susceptible, infected and recovered are repre-
sented by single scalar variables. We tgegs, 1) =
—£5(8, 1) = — (S, I), that is all individuals who be-
come infected are also infectious and therefore are re-
moved from the class of susceptible to the class of in-
fected. Concerning functional dependencefof, 1)

on its arguments we only assume

f(S, >0 forS>0,I>0,

fO,1)=0 forl>0,
f(5,00=0 forS>0,

0

—f(S,0)=0 for7 >0,
N

0

—f(0,1)=0 forS >0,
ol

0

—f(O,I)>0 for7 >0,
0S

0

a—J;(S,O)>O for S > 0. ©)

sume that the travel to another region happens in suchExample of (S, I) include, among others, a stan-

a way that an equal proportion of the population at a
particular location travels to a different region, where
it is uniformly redistributed along the region. Let us
denote this constant proportion of travelling individu-
als asp and takeu to be the same constant for both

dard bilinear incidence ratg'(S,1) = 8SI,8 > 0
used in the classical Kermack—McKendrick mofig|
its nonlinear generalizationg(S,1) = gSPI4,p >
0, g > 0, which allow one to take into account multiple
exposures prior to infectiofil9,20], and a saturated

regions. It is natural to assume that the symptoms of casef (S, 1) = aSI¥/(1+ I*),a > 0,k > 0, used to
infectious disease such as high fever, nausea, etc., carmodel cholera epidemics and avoid unbounded trans-

decrease the mobility of infected individuals by a con-
stant 0< o < 1. At the same time, recovered individ-

mission rate$21].
Rescaling the variables as; = x and x; =

uals are able to perform travels to a different region xL1/L>, and introducing a domaif? = [0, L], where
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L = Lj, one can finally rewrite the systefh) as

asl Df% — f(S1, 1) —uS1+ 5 [ S2dx,
%h=pi% o SR+ f(S1. ) —rli—poh

+—f9 Irdx,
%} DRERL 4 1y — Ry + % [, Rad, .
352 = DS — £(S2. 1) — uS2+ 1 [, S1dx,
SF Déa 2+ f(S2 ) —rb—pol

+ 52 [o hdx,
%2 = Df% +rlp— R+ % [ Ridx,

forallr > 0, x € £2 =0, L]. Since this model is posed
on a finite domain, one needs to specify additionally
some boundary conditions. We take these taddlux

or Neumann boundary conditions, i.e.,

85,

3Si
7 0=

(L) =0,

5(0)=E(L)=O,

i=12 9)
Physically these conditions mean that individuals can-
not leave the regions they inhabit through the bound-
ariesx = 0 orx = L. They can only move to another
region by a long-distance travel. Arguments similar to
those of the maximum principli22] show that the
solutions of the systeni8) with nonnegative initial
conditions will remain nonnegative for all times. This
shows that the problem is well-posed in terms of its
epidemiological interpretation. Finally, we notice that
due to particular structure of the systé#), the total
number of individuals in both regions

TP(t) = /(Sl + I+ R+ S2+ 2+ Ro)(x,t)dx
2
remains constant throughout the evolution.

3. Equilibriaand their stability

In order to understand possible dynamics in the sys-

tem (8) we begin with the analysis of its equilibria.
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3.1. Uniform steady states

Among various steady states which can be exhib-
ited by the system an important place is occupied by
the uniform (i.e., spatially homogeneous) equilibria.
For the systen(8) these equilibria are defined as solu-
tions of the following system of equations

—f(81, 1) — uS1+ uS2 =0,

f(S1, ) —rly —poli+ ol =0,
rly — uR1+ puR2 =0,

—f(S2,I2) — uS2 4+ uS1 =0,

f(S2, 1) —rly— poly+poly =0,
rlp — uR2 + uR1 =0. (20)

From the first and the fourth equations of this system
one concludes that; = S». In the case of positive re-
covery rater > 0, there is a continuum of steady states
given by

(81, I1, R1) = (S2, I2, R2) = (5,0, R),

where § + R = TP/2L. These equilibria are stable
provided

af
_r+ 8_1

(11)

(5,0) <O. (12)
If, however, the recovery rate vanishes, then the steady
states(S‘, 0, Ii’) are linearly unstable, and there exists
an additional set of linearly stable equilibiig, 7, R)
with 7 + R = TP/2L. In view of the initial condition
R1(0, x) = R2(0, x) = 0 it follows from the systeni8)
that the populations of recovered remain zero through-
out the time evolution, and s& = 0.

Inclusion of vital dynamics in our model can pro-
vide the existence afndemicequilibria characterized
by nonzero values of all population densities.

3.2. Long-term asymptotic behaviour

As it was noted in the end of Sectidh the to-
tal populationTP is constant. Using this and the fact
that all S;, I; andR;,i = 1, 2 are nonnegative for all
t > 0, we conclude that all population densities remain
bounded throughout the time evolution. This result al-
lows one to study a long-time asymptotic behaviour of
the systen(8).
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Assuming positive initial data, one obtains upon calculations yield

adding together the equations f§yrand S, in the sys-
tem(8) and integrating over the domain

0

— S S2)d

at/(1+ 2)dx
2

=- / (f(S1. 1) + £ (S2. 1)) dx <O. (13)

2

Since the total numbqu (81 + S2) dx of susceptibles

in both regions cannot be negative, the above inequal-

ity (13)suggests that in the limit— oo one must have

. d
lim — [ (S1+4 S2)dx =0.
t—>00 Ot
ko)

Using relations(13) and the properties of the func-
tion f, one concludes that the functiof(s;, I;) ap-

proaches zero uniformly in both regions. This can hap-

pen if in each region eithe¥ or I becomes uniformly

zero. Furthermore, from the first equation of the sys-

tem (8) it follows that if S; — 0, thenS, also tends
to zero, and similar conclusions hold 8 and I1 2.

fot+go  fo— 80 ~2uot

I1(x, 1) =e_”i 5 >

o 2.2
_ Dln big nwx
+2) fe B )tcos—L }
n=1

b.1)= e fo+ 8o n 80— fo 201
2 2
e _(MJFDI&), nTX
+228n€ 2.2 cosT , (17)
n=1
where
1 L
nmwx
anz/I]_(X,O)COSTdX,
0
1 L
&n = z/Iz(x,O) cosmTTx dx.

0

It follows from (17) that ast — oo, the densities of
infected individuals in both regions tend to equalize

Hence, one concludes that asymptotically the system and simultaneously they both decrease exponentially

tends to a state, in which either

lim Si(x,1) = lim S»(x,7) =0, (14)
t—00 t—00

or

lim I1(x,t) = lim Ix(x,t)=0. (15)
—00 —00

In the cas€14)the long-term dynamics is determined
by solutions of a reduced system

al
B=p

I

1
alp 1 03I
5 =D3

2
S — r + o)+ 22 [, Lrdx,

92 2 (r no

=% —(r+puo)lr+ 5 I1dx,

Ix2 L fQ (16)

aR 92R
U= DFEB vl — R+ [ Rod.

oR 92R
5 = D¥ ot triz—uRo+ 1 [o Ridx,

with time, thus giving
lim I1(x,t) = lim Ix(x,t)=0.
1—>0o0 1—0o0

Therefore, asymptotically the dynamics of the full sys-
tem (8) is described by the system of equations for
recovered individuals:

8R1 _ RO?R
i =Dy ax21_“R1+%f_Q Radx, (18)
2

82 = DFOR2 — iRy + ¥ [ Rudx.

It immediately follows that the solution®; and R of

this system approach the uniform state
P
Ri1(x) = Ra(x) = TR

exponentially in time. In a particular case of vanish-
ing recovery rate = 0, the solution of the syste(®)

with Neumann boundary conditions and nonnegative approaches a linearly stable steady state of the form
initial data. It is easy to see that this system of equa- (0, TP/2L, 0).

tions decouples and the first two equations form a  Similar consideration shows that in the c446),
closed system. The latter can be used using separathe reduced system decouples, and the densities of
tion of variables and, moreover, the functions €5, susceptibles and recovered tend to equalize between
n € Z4 can be used as eigenfunctions of the corre- the two regions thus settling on a stable steady state
sponding Sturm—Liouville problems. Straightforward (S, 0, R) with § + R = TP/2L.
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So, the general conclusion is that as the time
evolves, the populations go from susceptible to re-
covered through being infected, and ultimately tend
to equalize in both regions. If initially there are no in-
fected individuals or their number is very small, then
the time evolution will lead to equalizing susceptible
populations but, obviously, there will be no transition
to the infected class and further to recovered. Fur-
thermore, ifr > 0 and —r + af/al(S‘,O) < 0 then
even if there is a small amount of infected individu-
als, then they will quickly move to a recovered class,
and the epidemic will stop. This means that by the
end of epidemic there will remain individuals in the

class of susceptible who have never suffered from a

disease.

On the other hand, if initially there is a nonzero
number of infected individuals and sufficiently large
number of susceptibles to violater + df/31(S, 0)
< 0, then initially there will exist an epidemic char-
acterized by a growing number of infecteds. However,
later the population densities of susceptibles will de-
crease thus decreasing the influx of new infecteds,
and the system will eventually approach one of the
stable steady states, 0, R). In a very special case
of vanishing recovery rate, all steady states of the
form (S,0, R) are unstable, and the system settles
itself on the linearly stable equilibrium of the form
(0, TP/2L, 0).

As we have already established, depending on ini-
tial data and parameters, the solution of sys{@&n
tends to uniform steady states of the foiisy, /1,

R1) = (S2, I, R2) = (S, 0, R) with § + R = TP/2L,
or (81, I1, R1) = (S2, I, R2) = (0, TP/2L,0). This
implies that in the systern{8) one cannot observe sta-
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established that depending on initial conditions and
parameters, the system has two classes of steady states
which either have no infected individuals (general case
of positiver) or have no susceptibles (a case ef 0).

At the same time, the existence of inhomogeneous
steady states is prohibited within the validity of as-
sumption on a disease transmission rate.

Now we use numerical simulations to study the
temporal evolution of spatial distributions of individ-
uals during the process of epidemic on two particular
examples. At this stage one has to consider a particular
form of a disease transmission functigits, 7), and
we take it to be of the bilinear fornfi (S, I) = 8SI.

First, we fixr = 0.5 and take initial population to
be equally distributed between two regions. In the first
region it further equally distributed between suscepti-
bles and infecteds as shown in the left pandFigf. 1
Even though initially the number of infecteds grows,
this trend quickly stops when the number of available
susceptibles decreases. The final distribution in this
case is presented in the right panelFofi. 1 and il-
lustrates the attractivity of the infecteds-free class of
steady states. A speed of equalizing the populations
in the two regions is determined by the parameters
ando, which characterize the rate of inter-region mo-
tion of individuals.

For the second simulation we take the same initial
condition but with a vanishing recovery rate. In this
case, after a short time, a redistribution of the individ-
uals between the regions occurs, and simultaneously
all of them become infected. Subsequently, infected
individuals tend to equilibrium distribution in both re-
gions shown in the right panel &g. 2 This confirms
the conclusions from the previous section about the

ble inhomogeneous steady states characterized by dong-term asymptotic dynamics of the systéih

non-trivial dependence of the population densities on
a spatial coordinate. If the syste®) had a more in-

volved structure possibly due to a vital dynamics or
more complicated travel dynamics, then such inhomo-

5. Discussion

geneous steady states could exist, and moreover, they A model developed in this Letter demonstrates
could possess an interesting spatial dynamics similar some important features of dynamics for the geo-

to that of pattern forming systenis].

4. Numerical simulations

graphical spread of epidemics in the presence of a
long-distance travel. When the recovery ratis pos-
itive, for any initial condition the time evolution leads

to a uniform steady state characterized by the absence
of infected individuals. At the same time, in most

In the previous sections we studied the steady state cases, the proportion of susceptible individuals in this

solutions of the mode{8) and their stability. It was

steady state is nonzero, and this means that after the



K.B. Blyuss / Physics Letters A 345 (2005) 129-136 135

0.6 04
0.4 0.2
0.2 0
0 50 X 100 0 50 X 100
0.4 0.2
2
0 0
O ..................................
-0.2
0 50 X 100 0 50 X 100
0.2
0.4
0 0.2
-0.2 0
0 50 X 100 0 50 X 100

Fig. 1. Temporal dynamics with the parameter valiBs= L =100,D =1, u = 0.2, 8 =0.5,0 = 1 andr = 0.5. Left panel shows susceptible
(top), infected (middle) and recovered (bottom) populations at tiead, while the right panel shows the eventual steady state. Densities are
represented by solid lines in the first region, and by dotted lines in the second region.
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Fig. 2. The same as iRig. 1 but withr = 0.

epidemic has finished there will be some individuals susceptible individuals. In this case, the epidemic con-
who have never suffered from a disease. Only when sists simply in transition from the class of susceptible
there is no recovery from a diseage= 0), the final into the class of infecteds as in the classi€aimodel,

state of the system is characterized by the absence ofand the there are obviously no recovered individuals.
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