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Abstract

This Letter studies the dynamics of infectious diseases which are spread geographically through long-distance trave
two regions and subsequent local redistribution through a process of diffusion. A particular case of an equiproportion
is considered, and the model describes migration rather than short visits. We examine uniform and nonuniform stea
together with their linear stability. Numerical simulations are performed to illustrate the evolution of initial distribution o
ulation towards its final stage, which is represented by uniform distribution of the total population among infected indiv
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In modelling a spread of infectious diseases a
nificant role is played by the geographic motion
individuals. Several approaches have been develo
to incorporate this important feature in the analys
One of them assumes individuals to move random
and therefore models their spatial distribution in ter
of Fickian diffusion, i.e., when the population flux
proportional to the concentration gradient[1]. Under
this assumption, diffusion is approximated by add

E-mail address:blyuss@maths.ex.ac.uk(K.B. Blyuss).
0375-9601/$ – see front matter 2005 Elsevier B.V. All rights reserved
doi:10.1016/j.physleta.2005.07.004
Laplacian diffusion terms to the ODEs that model
temporal dynamics[2–6]. In this framework each sub
population has to be considered separately in orde
be properly represented by the diffusion model[3].

Diffusion-type models are usually applied wh
the spread of disease is mainly characterized by
cal contacts between individuals. At the same tim
it can be advantageous to allow for nonlocal dif
sion, which can lead to contacts between suscep
individuals at one place with infected individuals
another[7–9]. This mechanism is usually represen
by contact functionals, which have the form of integ
operators with kernels describing the probabilities
motion between different points in the domain[6,10].
.
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A review of the diffusion processes as described by
formalism of contact distributions can be found in t
recent work by Rass and Radcliffe[11].

Recently, additional attention has been paid
models which include populations residing in mo
than one region with the possibility of travel b
tween the regions[12,13]. These models incorpo
rate the process of mobility of individuals explicitl
thus avoiding the necessity to justify the Marko
ian character of mobility. It is worth noting sever
works devoted to stochastic modelling of the spre
of epidemics in social networks as well as in wor
wide transport networks (see[14–16] and reference
therein). These results are particularly important
view of recent outbreak of severe acute respiratory
ease (SARS) and its global spread[17,18]. Still, these
models do not take into account spatial structure of
populations.

In this Letter we propose a basic model whi
incorporates mobility of individuals between two r
gions and their redistribution inside those regio
Travel between the regions is governed by integ
operators describing the probability of travel betwe
two particular locations in two regions. Local distri
ution of individuals inside their respective regions
described by the diffusion operators. Our model c
siders migration rather than short-visit travel, whi
means that after travel to another region individu
are assumed to reside there and are considered as
of population in that region. We will study equilibri
of the model and their stability, as well as perform
rect numerical simulations of the model. In particul
we shall consider a case when the model admits o
uniformsteady states of which one is the unstable
infected state and the other is a stable infected sta

2. Model derivation

Consider the population residing in two one-dime
sional regions, namely,Ω1 and Ω2 of sizesL1 and
L2, respectively. We divide the populations into thr
classes of susceptible, infected and recovered,
spatial densities beingSi (xi, t), Ii (xi, t) andRi (xi, t)

correspondingly, in a regioni, i = 1,2. Densities of
the total population in the two regions areN1(x1, t)

and N2(x2, t). The total population in both areas
TP(t) = ∫

N1(x1, t) dx1 + ∫
N2(x2, t) dx2.
Ω1 Ω2
rt

If one assumes that the transmission of infect
occurs in a close contact (i.e., a susceptible can
quire infection only after a contact with some infect
individual located at the same point) and there is
latency period, then a general model for the spa
spread of epidemics in two populations can be w
ten in the form

∂S1

∂t
= f S(S1, I1) + (

KS
1 ∗ S1

) − S1
(
KS

12 ∗ 1
)

+ (
KS

21 ∗ S2
)
,

∂I1

∂t
= f I (S1, I1) − rI1 + (

KI
1 ∗ I1

) − I1
(
KI

12 ∗ 1
)

+ (
KI

21 ∗ I2
)
,

∂R1

∂t
= rI1 + (

KR
1 ∗ R1

) − R1
(
KR

12 ∗ 1
)

+ (
KR

21 ∗ R2
)
,

∂S2

∂t
= f S(S2, I2) + (

KS
2 ∗ S2

) − S2
(
KS

21 ∗ 1
)

+ (
KS

12 ∗ S1
)
,

∂I2

∂t
= f I (S2, I2) − rI2 + (

KI
2 ∗ I2

) − I2
(
KI

21 ∗ 1
)

+ (
KI

12 ∗ I1
)
,

∂R2

∂t
= rI2 + (

KR
2 ∗ R2

) − R2
(
KR

21 ∗ 1
)

(1)+ (
KR

12 ∗ R1
)
.

HereSi , Ii andRi are the vectors of susceptible, i
fected and recovered individuals, respectively, in b
regions. In this model it is assumed that the dise
confers permanent immunity, i.e., after individuals
cover, they move to the classRi and never becom
susceptible again. Recovery rate satisfiesr � 0. The
cases of cross-immunity against different strains
temporary immunity can be easily incorporated in
model. The functionsf S andf I represent the dynam
ics of a disease transmission and include informa
about the disease transmission rate, patterns of s
behaviour, etc.

Spatial dynamics of the disease spread is gove
by local and nonlocal diffusion terms. Inside the
gions a diffusion of individuals is described by t
convolution termsKS,I,R

1,2 as

(
KS

i ∗ Si

)
(x, t) =

∫
KS

i (xi, x)Si (xi) dxi,
Ωi
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(
KI

i ∗ Ii

)
(x, t) =

∫
Ωi

KI
i (xi, x)Ii (xi) dxi,

(2)

(
KR

i ∗ Ri

)
(x, t) =

∫
Ωi

KR
i (xi, x)Ri (xi) dxi, i = 1,2.

We assume that there is no long-distance travel in
each region, and the population is spread through
local diffusion only. This assumption is represen
formally by choosing the kernelsKS,I,R

i (xi, x) to be
of the form

K
S,I,R
i (xi, x) = D

S,I,R
i δxx(x − xi),

(3)D
S,I,R
i � 0,

whereδ(x) is the Dirac delta-function, andDS,I,R
i are

diffusion coefficient of susceptible, infected and
covered individuals in each region. After substituti
into (2) this gives(
KS

i ∗ Si

) = DS
i �Si ,

(
KI

i ∗ Ii

) = DI
i �Ii ,

(4)
(
KR

i ∗ Ri

) = DR
i �Ri .

For the sake of generality we allow for all diffusio
coefficients to be different, even though in concrete
amples it possible to simplify consideration by takin
for instance,DS

1 = DS
2 = DR

1 = DR
2 andDI

1 = DI
2.

In a similar way,KS,I,R
12 andK

S,I,R
21 describe the

proportion of individuals travelling from region 1 t
region 2 (and from 2 to 1, respectively):

(
K

S,I,R
12 ∗ g

)
(x2, t) =

∫
Ω1

K
S,I,R
12 (x1, x2)g(x1) dx1,

(5)
(
K

S,I,R
21 ∗ g

)
(x1, t) =

∫
Ω2

K
S,I,R
21 (x2, x1)g(x2) dx2,

for any smooth vector-functiong. Next, one can as
sume that the travel to another region happens in s
a way that an equal proportion of the population a
particular location travels to a different region, whe
it is uniformly redistributed along the region. Let u
denote this constant proportion of travelling individ
als asµ and takeµ to be the same constant for bo
regions. It is natural to assume that the symptom
infectious disease such as high fever, nausea, etc.
decrease the mobility of infected individuals by a co
stant 0� σ � 1. At the same time, recovered indivi
uals are able to perform travels to a different reg
n

in exactly the same way as the susceptible individu
do. With these assumptions one obtains

(
KS

12 ∗ g
)
(x2, t) = µ

L2

∫
Ω1

g(x1) dx1,

(
KS

21 ∗ g
)
(x1, t) = µ

L1

∫
Ω2

g(x2) dx2,

KI
12 = σKS

12, KI
21 = σKS

21,

(6)KR
12 = KS

12, KR
21 = KS

21.

We consider the model with no vital dynamics, i.
without births or deaths, either natural of from
disease. For the sake of simplicity, the populatio
of susceptible, infected and recovered are re
sented by single scalar variables. We takef I (S, I ) =
−f S(S, I ) = −f (S, I ), that is all individuals who be
come infected are also infectious and therefore are
moved from the class of susceptible to the class of
fected. Concerning functional dependence off (S, I )

on its arguments we only assume

f (S, I ) > 0 for S > 0, I > 0,

f (0, I ) = 0 for I � 0,

f (S,0) = 0 for S � 0,

∂f

∂S
(S,0) = 0 for I � 0,

∂f

∂I
(0, I ) = 0 for S � 0,

∂f

∂S
(0, I ) > 0 for I > 0,

(7)
∂f

∂I
(S,0) > 0 for S > 0.

Example off (S, I ) include, among others, a sta
dard bilinear incidence ratef (S, I ) = βSI,β > 0
used in the classical Kermack–McKendrick model[1],
its nonlinear generalizationsf (S, I ) = βSpIq,p �
0, q � 0, which allow one to take into account multip
exposures prior to infection[19,20], and a saturate
casef (S, I ) = αSIk/(1 + I k),α > 0, k > 0, used to
model cholera epidemics and avoid unbounded tra
mission rates[21].

Rescaling the variables asx1 = x and x2 =
xL1/L2, and introducing a domainΩ = [0,L], where
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L = L1, one can finally rewrite the system(1) as

(8)




∂S1
∂t

= DS
1

∂2S1
∂x2 − f (S1, I1) − µS1 + µ

L

∫
Ω

S2 dx,

∂I1
∂t

= DI
1

∂2I1
∂x2 + f (S1, I1) − rI1 − µσI1

+ µσ
L

∫
Ω

I2 dx,

∂R1
∂t

= DR
1

∂2R1
∂x2 + rI1 − µR1 + µ

L

∫
Ω

R2 dx,

∂S2
∂t

= DS
2

∂2S2
∂x2 − f (S2, I2) − µS2 + µ

L

∫
Ω

S1 dx,

∂I2
∂t

= DI
2

∂2I2
∂x2 + f (S2, I2) − rI2 − µσI2

+ µσ
L

∫
Ω

I1 dx,

∂R2
∂t

= DR
2

∂2R2
∂x2 + rI2 − µR2 + µ

L

∫
Ω

R1 dx,

for all t � 0, x ∈ Ω = [0,L]. Since this model is pose
on a finite domain, one needs to specify additiona
some boundary conditions. We take these to beno-flux
or Neumann boundary conditions, i.e.,

∂Si

∂x
(0) = ∂Si

∂x
(L) = 0,

∂Ii

∂x
(0) = ∂Ii

∂x
(L) = 0,

(9)
∂Ri

∂x
(0) = ∂Ri

∂x
(L) = 0, i = 1,2.

Physically these conditions mean that individuals c
not leave the regions they inhabit through the bou
ariesx = 0 or x = L. They can only move to anothe
region by a long-distance travel. Arguments similar
those of the maximum principle[22] show that the
solutions of the system(8) with nonnegative initial
conditions will remain nonnegative for all times. Th
shows that the problem is well-posed in terms of
epidemiological interpretation. Finally, we notice th
due to particular structure of the system(8), the total
number of individuals in both regions

TP(t) =
∫
Ω

(S1 + I1 + R1 + S2 + I2 + R2)(x, t) dx

remains constant throughout the evolution.

3. Equilibria and their stability

In order to understand possible dynamics in the s
tem(8) we begin with the analysis of its equilibria.
3.1. Uniform steady states

Among various steady states which can be exh
ited by the system an important place is occupied
the uniform (i.e., spatially homogeneous) equilibr
For the system(8) these equilibria are defined as so
tions of the following system of equations

−f (S1, I1) − µS1 + µS2 = 0,

f (S1, I1) − rI1 − µσI1 + µσI2 = 0,

rI1 − µR1 + µR2 = 0,

−f (S2, I2) − µS2 + µS1 = 0,

f (S2, I2) − rI2 − µσI2 + µσI1 = 0,

(10)rI2 − µR2 + µR1 = 0.

From the first and the fourth equations of this syst
one concludes thatS1 = S2. In the case of positive re
covery rater > 0, there is a continuum of steady sta
given by

(11)(S1, I1,R1) = (S2, I2,R2) = (Ŝ,0, R̂),

where Ŝ + R̂ = TP/2L. These equilibria are stab
provided

(12)−r + ∂f

∂I
(Ŝ,0) < 0.

If, however, the recovery rate vanishes, then the ste
states(Ŝ,0, R̂) are linearly unstable, and there exis
an additional set of linearly stable equilibria(0, Î , R̂)

with Î + R̂ = TP/2L. In view of the initial condition
R1(0, x) = R2(0, x) = 0 it follows from the system(8)
that the populations of recovered remain zero throu
out the time evolution, and sôR = 0.

Inclusion of vital dynamics in our model can pr
vide the existence ofendemicequilibria characterized
by nonzero values of all population densities.

3.2. Long-term asymptotic behaviour

As it was noted in the end of Section2, the to-
tal populationTP is constant. Using this and the fa
that all Si , Ii andRi, i = 1,2 are nonnegative for a
t � 0, we conclude that all population densities rem
bounded throughout the time evolution. This result
lows one to study a long-time asymptotic behaviou
the system(8).
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Assuming positive initial data, one obtains up
adding together the equations forS1 andS2 in the sys-
tem(8) and integrating over the domain

∂

∂t

∫
Ω

(S1 + S2) dx

(13)= −
∫
Ω

(
f (S1, I1) + f (S2, I2)

)
dx � 0.

Since the total number
∫
Ω

(S1 + S2) dx of susceptibles
in both regions cannot be negative, the above ineq
ity (13)suggests that in the limitt → ∞ one must have

lim
t→∞

∂

∂t

∫
Ω

(S1 + S2) dx = 0.

Using relations(13) and the properties of the func
tion f , one concludes that the functionf (Si, Ii) ap-
proaches zero uniformly in both regions. This can h
pen if in each region eitherS or I becomes uniformly
zero. Furthermore, from the first equation of the s
tem (8) it follows that if S1 → 0, thenS2 also tends
to zero, and similar conclusions hold forS2 andI1,2.
Hence, one concludes that asymptotically the sys
tends to a state, in which either

(14)lim
t→∞S1(x, t) = lim

t→∞S2(x, t) = 0,

or

(15)lim
t→∞ I1(x, t) = lim

t→∞ I2(x, t) = 0.

In the case(14) the long-term dynamics is determine
by solutions of a reduced system

(16)




∂I1
∂t

= DI
1

∂2I1
∂x2 − (r + µσ)I1 + µσ

L

∫
Ω

I2 dx,

∂I2
∂t

= DI
2

∂2I2
∂x2 − (r + µσ)I2 + µσ

L

∫
Ω

I1 dx,

∂R1
∂t

= DR
1

∂2R1
∂x2 + rI1 − µR1 + µ

L

∫
Ω

R2 dx,

∂R2
∂t

= DR
2

∂2R2
∂x2 + rI2 − µR2 + µ

L

∫
Ω

R1 dx,

with Neumann boundary conditions and nonnega
initial data. It is easy to see that this system of eq
tions decouples and the first two equations form
closed system. The latter can be used using sep
tion of variables and, moreover, the functions cosnπx

L
,

n ∈ Z+ can be used as eigenfunctions of the co
sponding Sturm–Liouville problems. Straightforwa
-

calculations yield

I1(x, t) = e−rt

{
f0 + g0

2
+ f0 − g0

2
e−2µσt

+ 2
∞∑

n=1

fne
−(

µσ+DI
1

n2π2

L2
)
t
cos

nπx

L

}
,

I2(x, t) = e−rt

{
f0 + g0

2
+ g0 − f0

2
e−2µσt

(17)+ 2
∞∑

n=1

gne
−(

µσ+DI
2

n2π2

L2
)
t cos

nπx

L

}
,

where

fn ≡ 1

L

L∫
0

I1(x,0)cos
nπx

L
dx,

gn ≡ 1

L

L∫
0

I2(x,0)cos
nπx

L
dx.

It follows from (17) that ast → ∞, the densities o
infected individuals in both regions tend to equal
and simultaneously they both decrease exponent
with time, thus giving

lim
t→∞ I1(x, t) = lim

t→∞ I2(x, t) = 0.

Therefore, asymptotically the dynamics of the full s
tem (8) is described by the system of equations
recovered individuals:

(18)




∂R1
∂t

= DR
1

∂2R1
∂x2 − µR1 + µ

L

∫
Ω

R2 dx,

∂R2
∂t

= DR
2

∂2R2
∂x2 − µR2 + µ

L

∫
Ω

R1 dx.

It immediately follows that the solutionsR1 andR2 of
this system approach the uniform state

R1(x) = R2(x) = TP

2L
,

exponentially in time. In a particular case of vanis
ing recovery rater = 0, the solution of the system(8)
approaches a linearly stable steady state of the f
(0,TP/2L,0).

Similar consideration shows that in the case(15),
the reduced system decouples, and the densitie
susceptibles and recovered tend to equalize betw
the two regions thus settling on a stable steady s
(Ŝ,0, R̂) with Ŝ + R̂ = TP/2L.
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So, the general conclusion is that as the ti
evolves, the populations go from susceptible to
covered through being infected, and ultimately te
to equalize in both regions. If initially there are no i
fected individuals or their number is very small, th
the time evolution will lead to equalizing susceptib
populations but, obviously, there will be no transiti
to the infected class and further to recovered. F
thermore, if r > 0 and −r + ∂f/∂I (Ŝ,0) < 0 then
even if there is a small amount of infected individ
als, then they will quickly move to a recovered cla
and the epidemic will stop. This means that by
end of epidemic there will remain individuals in th
class of susceptible who have never suffered from
disease.

On the other hand, if initially there is a nonze
number of infected individuals and sufficiently lar
number of susceptibles to violate−r + ∂f/∂I (Ŝ,0)

< 0, then initially there will exist an epidemic cha
acterized by a growing number of infecteds. Howev
later the population densities of susceptibles will
crease thus decreasing the influx of new infecte
and the system will eventually approach one of
stable steady states(Ŝ,0, R̂). In a very special cas
of vanishing recovery rate, all steady states of
form (Ŝ,0, R̂) are unstable, and the system sett
itself on the linearly stable equilibrium of the for
(0,TP/2L,0).

As we have already established, depending on
tial data and parameters, the solution of system(8)
tends to uniform steady states of the form(S1, I1,

R1) = (S2, I2,R2) = (Ŝ,0, R̂) with Ŝ + R̂ = TP/2L,
or (S1, I1,R1) = (S2, I2,R2) = (0,TP/2L,0). This
implies that in the system(8) one cannot observe st
ble inhomogeneous steady states characterized
non-trivial dependence of the population densities
a spatial coordinate. If the system(8) had a more in-
volved structure possibly due to a vital dynamics
more complicated travel dynamics, then such inhom
geneous steady states could exist, and moreover,
could possess an interesting spatial dynamics sim
to that of pattern forming systems[1].

4. Numerical simulations

In the previous sections we studied the steady s
solutions of the model(8) and their stability. It was
established that depending on initial conditions a
parameters, the system has two classes of steady s
which either have no infected individuals (general c
of positiver) or have no susceptibles (a case ofr = 0).
At the same time, the existence of inhomogene
steady states is prohibited within the validity of a
sumption on a disease transmission rate.

Now we use numerical simulations to study t
temporal evolution of spatial distributions of individ
uals during the process of epidemic on two particu
examples. At this stage one has to consider a partic
form of a disease transmission functionf (S, I ), and
we take it to be of the bilinear formf (S, I ) = βSI .

First, we fix r = 0.5 and take initial population to
be equally distributed between two regions. In the fi
region it further equally distributed between susce
bles and infecteds as shown in the left panel ofFig. 1.
Even though initially the number of infecteds grow
this trend quickly stops when the number of availa
susceptibles decreases. The final distribution in
case is presented in the right panel ofFig. 1 and il-
lustrates the attractivity of the infecteds-free class
steady states. A speed of equalizing the populat
in the two regions is determined by the parameterµ

andσ , which characterize the rate of inter-region m
tion of individuals.

For the second simulation we take the same in
condition but with a vanishing recovery rate. In th
case, after a short time, a redistribution of the indiv
uals between the regions occurs, and simultaneo
all of them become infected. Subsequently, infec
individuals tend to equilibrium distribution in both re
gions shown in the right panel ofFig. 2. This confirms
the conclusions from the previous section about
long-term asymptotic dynamics of the system(8).

5. Discussion

A model developed in this Letter demonstra
some important features of dynamics for the g
graphical spread of epidemics in the presence o
long-distance travel. When the recovery rater is pos-
itive, for any initial condition the time evolution lead
to a uniform steady state characterized by the abs
of infected individuals. At the same time, in mo
cases, the proportion of susceptible individuals in t
steady state is nonzero, and this means that afte
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le
s are
Fig. 1. Temporal dynamics with the parameter valuesTP= L = 100,D = 1, µ = 0.2, β = 0.5, σ = 1 andr = 0.5. Left panel shows susceptib
(top), infected (middle) and recovered (bottom) populations at timet = 0, while the right panel shows the eventual steady state. Densitie
represented by solid lines in the first region, and by dotted lines in the second region.

Fig. 2. The same as inFig. 1but with r = 0.
als
hen

e o

on-
ble

als.
epidemic has finished there will be some individu
who have never suffered from a disease. Only w
there is no recovery from a disease(r = 0), the final
state of the system is characterized by the absenc
 f

susceptible individuals. In this case, the epidemic c
sists simply in transition from the class of suscepti
into the class of infecteds as in the classicalSI model,
and the there are obviously no recovered individu
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These conclusions are valid for any form of the dise
transmission functionf in (7).

There are several directions in which our model c
be improved to better describe the mechanisms of
tial disease transmission. In particular, this model
migrationmodel, meaning that after an individual h
travelled to another region, it has become a part of p
ulation inhabiting this region. At the same time, fro
the perspective of global travel, short-term visits
business or holidays seem to be more plausible so
of spread of epidemics.

Another important issue to be considered is t
of transmission dynamics itself, as described by
functionsf S,f I . We took these to represent only t
contacts between susceptible and infected indiv
als, but inclusion of vital dynamics (births and deat
probably from disease) as well as different time del
corresponding to latency or temporary immunity pe
ods, can substantially improve the performance of
model.

Finally, one can return to the model(1) and instead
of simple diffusion mechanism for travel inside the
gions, introduce the possibility of nonlocal diffusio
which is more realistic for countries with develop
system of domestic air travel. Under assumption t
the presence of disease reduces mobility of indivi
als by decreasing their diffusion coefficients, one c
expect the possibility of spatial pattern formation fro
endemic steady states of the model. In particular, s
patterning can occur in a model with vital dynam
and nonlinear incidence rate[23].

Using the kind of model considered in this Lett
together with detailed data about global air travel a
understanding of local travel patterns inside differ
countries, can provide a possibility to determine tre
in global spread of infectious diseases. This can a
help develop appropriate measures for disease co
and prevention.
l
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