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We investigate a time-delayed epidemic model for multi-strain diseases with temporary immunity.

In the absence of cross-immunity between strains, dynamics of each individual strain exhibit emer-

gence and annihilation of limit cycles due to a Hopf bifurcation of the endemic equilibrium, and a

saddle-node bifurcation of limit cycles depending on the time delay associated with duration of

temporary immunity. Effects of all-to-all and non-local coupling topologies are systematically

investigated by means of numerical simulations, and they suggest that cross-immunity is able to

induce a diverse range of complex dynamical behaviors and synchronization patterns, including

discrete traveling waves, solitary states, and amplitude chimeras. Interestingly, chimera states are

observed for narrower cross-immunity kernels, which can have profound implications for under-

standing the dynamics of multi-strain diseases. Published by AIP Publishing.
https://doi.org/10.1063/1.5008386

One of the most fascinating phenomena that has intrigued

researchers in the area of nonlinear dynamics for the last

fifteen years is a very peculiar pattern of behavior known

as chimera states, which is characterized by the simulta-

neous coexistence of regions of coherent and incoherent

dynamics. This pattern was found when identical oscilla-

tors were connected with a non-local coupling of high sym-

metry. In the following years, chimera states have attracted

a lot of interest and have been studied theoretically and

experimentally in a variety of different contexts. This paper

investigates how chimera states can appear in epidemic

models, and it also explores wider dynamics of multi-strain

diseases with time delay and non-local coupling.

I. INTRODUCTION

Chimera is a hybrid state with coherent and incoherent

dynamics, which was first described by Kuramoto and

Battogtokh in a system of coupled identical oscillators.1 This

unusual dynamical pattern was called a chimera state by

Abrams and Strogatz2 in light of analogy with a mythological

creature with three heads of three different animals. Chimera

states have been subsequently discovered in various contexts:

SQUID materials,3 quantum systems,4 electronic oscillators,5

and many more. It is currently debated that the dynamics

observed, for instance, in uni-hemispheric sleep in mammals

and birds,6 and blackouts in power-grids7–9 can be interpreted

as chimera states. Whilst chimera states have been observed in

a number of natural phenomena, they are quite complicated to

implement experimentally for several reasons. First, only

small networks can be realized in laboratory conditions, and

identical oscillators with identical intrinsic frequencies are

required.10 Second, chimera states can be very sensitive to ini-

tial conditions and often occur only in a small region of the

parameter space, and thus, an experimental setup has to be

very precisely controlled in terms of all parameters. Recent

studies on two coupled populations of phase oscillators have

also demonstrated the possibility of extended basins of attrac-

tion,11 and the existence of chimeras even for small numbers

of elements.12 Third, chimeras are often found to be transient

states that collapse after a finite period of time into a state of

full synchrony.13 Although the lifetime of chimeras has been

reported to increase exponentially13 or as a power-law14,15 in

dependence on the number of oscillators, it can be very short

for small networks. Note that it is also possible to design con-

figurations, for which the transients can become arbitrarily

long even for very small numbers of coupled elements, such

as two groups with two oscillators in each group.12 Despite

these challenges, chimera states have been robustly produced

in several experiments, including chemical oscillators,16 opti-

cal systems,17 time-delayed laser networks,18 electrochemical

oscillators,19 and mechanical oscillators.8 For a recent review,

see Panaggio and Abrams.20

The formation and properties of chimera states have been

studied in a number of theoretical models represented as

networks of FitzHugh-Nagumo,21 Kuramoto,14,22 Ginzburg-

Landau,23 van der Pol,24 leaky integrate-and-fire,25 Stuart-

Landau,26 Hindmarsh-Rose,27 Hodgkin-Huxley,28 and

SNIPER29 oscillators, and many other models. Whilst origi-

nally chimera states were discovered in the case of non-

local coupling,1 subsequently a number of other topologies

have been identified that can result in chimera states, including

global30 and local31,32 coupling. There is a large variety in

manifestations of chimera states and how they can appear in
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different systems. If one considers amplitude-phase represen-

tation of individual node dynamics, it is possible to distinguish

between phase chimeras and amplitude chimeras. The phase

chimera is defined as the coexistence of coherent and incoher-

ent regions in the space of phases of different oscillators.33 In

this case, the average phase velocity of different oscillators

exhibits a characteristic arc-shape profile, with a pronounced

increase or decrease in the average frequency for the incoher-

ent region associated with the chimera state. In contrast, an

amplitude chimera appears as a sudden increase or decrease in

the average amplitude of oscillations.23,33,34

In this paper, we consider the emergence and behavior

of chimeras in the specific context of epidemic models of

multi-strain diseases. A number of effective mathematical

frameworks have been developed over the years for the anal-

ysis of various aspects of strain interactions,35–41 with partic-

ular attention being paid to cross-immunity and its

effects.42–45 Multi-strain epidemic models have been shown

to exhibit a wide range of behaviors, including (partially)

synchronized dynamics, anti-phase oscillations, and chaotic

dynamics.44,46,47 Group-theoretical analysis of multi-strain

models has yielded significant inroads to systematic classifi-

cation of steady states and periodic solutions in terms of their

symmetry.48–52 Motivated by the recent work on chimeras in

locally coupled, delayed oscillators,32 we explore the dynam-

ics of a multi-strain network, in which coupling between

strains quantifies the degree of their cross-immunity, while

the dynamics of each individual strain is represented by a

compartmental model, with the time delay representing a

period of temporary immunity upon recovery from infection.

The remainder of this paper is organized as follows. In

Sec. II, we introduce the model and discuss its basic proper-

ties. Section III contains analytical and numerical bifurcation

studies of single-strain dynamics for completely antigeni-

cally distinct strains. In Sec. IV, different types of dynamics

are investigated in the presence of all-to-all and non-local

cross-immunity coupling kernels. The paper concludes in

Sec. V with the discussion of results.

II. MODEL

We consider a multi-strain disease, in which recovery from

an infection with any single strain results in a certain period of

temporary immunity against subsequent infections with that

strain. To analyze the dynamics of such a disease, one can com-

bine an susceptible-infected-recovered-susceptible (SIRS)-type

model of temporary immunity proposed by Kyrychko and

Blyuss53,54 with the status-based approach of Gog and Grenfell37

for multi-strain diseases, which gives the following model:

_SiðtÞ ¼ g� gSiðtÞ � SiðtÞ
XN

j¼1

bjrijIjðtÞ þ ciIiðt� sÞe�gs;

_I iðtÞ ¼ biSiðtÞIiðtÞ � ðci þ gÞIiðtÞ;

_RiðtÞ ¼ ciIiðtÞ � ciIiðt� sÞe�gs � gRiðtÞ

þSiðtÞ
XN

j¼1;j 6¼i

bjrijIjðtÞ; (1)

where Si, Ii, and Ri represent the number of people in the

population that are susceptible, infected, or recovered from

strain i ¼ 1; 2;…;N, with N being the total number of dis-

ease strains in circulation, g > 0 is a constant birth rate and

death rate assumed to be the same for all strains, bi > 0 and

ci > 0 are the transmission rate and the recovery rate of

strain i, respectively. This model assumes that after recovery,

individuals remain the class of recovered from strain i for a

period of temporary immunity s > 0, upon which they return

to the class of susceptible. For simplicity, we assume that the

transmission and recovery rates for all strains are the same,

namely, bi ¼ b and ci ¼ c. The factor 0 � rij � 1 denotes

the reduction in the susceptibility to strain i due to immune

response to a previous infection with strain j,39 with zero

denoting the complete cross-immunity, that is, the same

immunological response between two strains i and j, and

unity denoting the complete absence of cross-immunity, that

is, absolutely distinct immunological responses against the

two strains i and j. In this paper, we will consider all-to-all

coupling, that is, rij � 1, as well as two types of non-local

coupling kernels that represent more realistic immunological

relations between disease strains.

Summation of the left- and right-hand sides of Eq. (1)

yields

_SiðtÞ þ _I iðtÞ þ _RiðtÞ ¼ g� g SiðtÞ þ IiðtÞ þ RiðtÞ½ �; (2)

() _NiðtÞ ¼ g 1� NiðtÞ½ �; (3)

where NiðtÞ ¼ SiðtÞ þ IiðtÞ þ RiðtÞ denotes the total popula-

tion of strain i. Since the birth and death rates are equal, the

total population for each strain is asymptotically con-

stant,37,53 that is, all Ni tend to unity. The observations that

RiðtÞ ¼ 1� SiðtÞ � IiðtÞ and that RiðtÞ does not feature in

equations for Si and Ii, suggest that it is sufficient to focus on

the dynamics of variables Si and Ii only. To reduce the num-

ber of free parameters, we rescale time with ðgþ cÞ�1
and

introduce a basic reproduction number r ¼ b=ðgþ cÞ and a

rescaled mortality rate q ¼ g=ðgþ cÞ. This gives the follow-

ing rescaled model:

_SiðtÞ ¼ q 1� SiðtÞ½ � � rSiðtÞIiðtÞ þ ð1� qÞIiðt� sÞe�qs

�rSiðtÞ
XN

j¼1;j 6¼i

rijIjðtÞ;

_I iðtÞ ¼ rSiðtÞIiðtÞ � IiðtÞ;

(4)

where the self-coupling term is written out explicitly with

rii ¼ 1.

III. ANTIGENICALLY DISTINCT STRAINS

Before investigating the collective behavior in the full

multi-strain system, it is instructive to consider what happens

in the absence of cross-immunity, that is, when each strain is

genetically distinct, so as to cause a completely distinct

immunological response to infection, which is represented

by rij ¼ dij, where dij is the Kronecker delta. In this case, the

system (4) decouples into N independent copies, and the
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dynamics of each individual strain is described by the fol-

lowing system of equations:

_SðtÞ ¼ q 1� SðtÞ½ � � rSðtÞIðtÞ þ ð1� qÞIðt� sÞe�qs;

_IðtÞ ¼ rSðtÞIðtÞ � IðtÞ:
(5)

This system always has the disease-free steady state E0

¼ ðS0; I0Þ ¼ ð1; 0Þ, and it can also possess an endemic steady

state

E�s ¼ ðS�s ; I�s Þ ¼
1

r
; q

r � 1

r

1

1� ð1� qÞe�qs

� �
: (6)

The endemic equilibrium E�s is only biologically feasible if

r> 1, which, in terms of original parameters, corresponds to

the transmission rate b being larger than the sum of the natu-

ral death rate g and the recovery rate c. In the case of very

long immunity period, that is, for s!1, the susceptible-

infected-recovered (SIR) model (5) transforms into a stan-

dard SIR model with vital dynamics and permanent immu-

nity, and the endemic steady state then reduces to

E�1 ¼ S�1; I
�
1

� �
¼ 1

r
; q

r � 1

r

� �
: (7)

Linearization of the system (5) near the disease-free

steady state E0 gives the characteristic eigenvalues as k1

¼ �q and k2 ¼ r � 1, thus implying that the disease-free

steady state is stable, provided r< 1. For the endemic steady

state E�s , the characteristic equation has the form

k2 þ kðqþ rI�s Þ � rI�s � qðr � 1Þe�ks
h i

¼ 0; (8)

which, for a vanishing delay s¼ 0, always gives stable

eigenvalues due to r> 1. One root of this equation is

k ¼ �q < 0, which is stable independently of the time delay.

For non-zero immunity period, the endemic steady state can

lose its stability in a Hopf bifurcation, giving rise to periodic

solutions.

Since for s¼ 0, the eigenvalues k of the characteristic

equation (8) are stable, and k¼ 0 is never a solution of this

equation, the only possibility how the stability of the

endemic steady state can change is if a pair of complex con-

jugate eigenvalues crosses the imaginary axis for some value

of s. To find this critical time delay, we substitute k ¼ ix
into Eq. (8) and separate real and imaginary parts, which

yields

�x2 þ rI�s ¼ rI�s � qðr � 1Þ cos ðxsÞ
� �

;

xðqþ rI�s Þ ¼ rI�s þ qðr � 1Þ sin ðxsÞ
� �

:
(9)

Squaring and adding these two equations gives an implicit

equation for the Hopf frequency

x4 þ x2 q2 � 2rI�s ð1� qÞ þ r2ðI�s Þ
2

h i
�qðr � 1Þ qðr � 1Þ � 2rI�s

� �
¼ 0; (10)

which can be readily solved to give

x2
6 ¼

1

2
�q2 þ 2rI�s ð1� qÞ � r2ðI�s Þ

2
h i

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 2rI�s ð1� qÞ þ r2ðI�s Þ

2
h i2

þ 4qðr � 1Þ qðr � 1Þ � 2rI�s
� �r

: (11)

Alternatively, by dividing the Eq. (9), we find the criti-

cal value of the time delay at which the Hopf bifurcation

occurs

sc ¼
1

x
arctan

xðqþ rI�sc
Þ

x2 � rI�sc

 !
þ np

" #
; n 2N: (12)

Unfortunately, due to the fact that the steady-state value of

the infected fraction I�s itself explicitly depends on the time

delay s as shown in Eq. (6), it does not prove possible to find

a closed form expression for the Hopf frequency or the criti-

cal time delay.

To get a better understanding of the bifurcations of the

endemic fixed point, we perform numerical bifurcation

continuation using DDE-Biftool,55 choosing s as the con-

tinuation parameter. Figure 1 illustrates regions of stability

and instability of the endemic steady state, together with

multiple branches of characteristic eigenvalues. For the

chosen parameter values, this figure shows that a single

branch escapes the stable region from s1 � 8:88 to

s2 � 38:49, and in this interval of time delays, the endemic

steady state is unstable.

Having identified the points at which the endemic equi-

librium loses/gains its stability, we now focus on the limit

cycle that emerges at these bifurcation points. Figure 2

shows the period and amplitude of the limit cycle depend-

ing on the time delay. This figure indicates that at

s ¼ s1 � 8:88, the endemic steady state undergoes a super-

critical Hopf bifurcation, giving rise to a stable limit cycle,

FIG. 1. Real part of the eigenvalue versus time delay. The blue and red areas

indicate regions of stability and instability of the endemic steady state,

respectively. Parameter values are q ¼ 0:02 and r¼ 2.
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whereas at s ¼ s2 � 38:49 it undergoes a subcritical Hopf

bifurcation, at which the endemic equilibrium regains its

stability, and an unstable limit cycle is born. These two

limit cycles coexist for s > s2 until they merge at a point

s3 � 43:97 and annihilate in a saddle-node bifurcation of

limit cycles.

IV. MULTI-STRAIN DYNAMICS

As a next step, we consider the network of N coupled

strains (4), where in the absence of coupling the dynamics of

each strain is described by a delayed SIR model (5). Before

proceeding with numerical simulations, it is worth noting

that for any form of the coupling rij, the system (4) admits a

one-strain solution with IiðtÞ 6¼ 0 and IjðtÞ ¼ 0 for j 6¼ i that

defines an invariant manifold (cf. Blyuss and Gupta56 for a

similar type of behavior in a D4-symmetric model of anti-

genic variation), and whose behavior is described by the fol-

lowing system:

_SiðtÞ¼q 1�SiðtÞ½ �� rSiðtÞIiðtÞþð1�qÞIiðt� sÞe�qs;

_I iðtÞ¼ rSiðtÞIiðtÞ� IiðtÞ;
_SjðtÞ¼q 1�SjðtÞ

� �
� rrjiSjðtÞIiðtÞ; j 6¼ i:

(13)

Effectively, the system decouples into the single-strain

dynamics (5) for strain i, which then drives the evolution of

Sj variables, while all Ij remain zero. The equivalent one-

strain endemic steady state is given by

S�i ¼
1

r
; I�i ¼ q

r � 1

r

1

1� ð1� qÞe�qs
;

S�j ¼
1� ð1� qÞe�qs

1� ð1� qÞe�qs þ rijðr � 1Þ ; I�j ¼ 0; j 6¼ i: (14)

In the case of all-to-all coupling with rij ¼ 1, the system (4)

possesses a ZN symmetry; hence, it has N identical one-

strain steady states given by Eq. (14) for any i ¼ 1;…;N.

Furthermore, for such coupling the system (13) reduces to

just strain i with the dynamics given by Eq. (5), and all other

strains, whose dynamics is exactly the same and is fully

driven by the strain i. Techniques of equivariant bifurcation the-

ory can be used to systematically characterize various steady

states and periodic solutions in terms of their symmetry.48–50,56

Besides one-strain steady states, the system (4) also has

a fully symmetric endemic steady state

S�1 ¼ � � � ¼ S�N ¼ S�end; I�1 ¼ � � � ¼ I�N ¼ I�end; (15)

where

S�end ¼
1

r
; I�end ¼ q

r � 1

r

1

1� ð1� qÞe�qs þ rc
;

with rc ¼
P

i 6¼j rij.

For each type of coupling, we have used the dde23

solver57 to numerically integrate the system (4) with the ini-

tial conditions taken as follows: Si are uniformly distributed

random numbers between 0 and 1 independent for each

strain, and random Ii 2 ½0; 1� Si� being constant in

t 2 ½s; 0Þ. We investigate possible dynamical behavior for

three different types of coupling between strains: the all-to-

all coupling, a Gaussian kernel based on the model of Gog

and Grenfell,37 and a functional cosine kernel suggested by

Gomes et al.39 Since the last two kernels are non-local, in

principle, one can expect to observe chimera states in such

multi-strain systems,1,2 and below we investigate the appear-

ance of such states and transitions between them and other

dynamical regimes.

A. All-to-all coupling

In the case of global all-to-all coupling rij ¼ 1, the same

amount of cross-immunity is present between all interacting

strains, which biologically means that every strain is related

to all other strains in the same way. Figure 3 shows the

dynamics of system (4) with N¼ 60 strains for an all-to-all

coupling and time delay s¼ 25 for which a stable limit cycle

is observed in the single-strain dynamics. The time series, as

well as the snapshot and the space-time plot, indicates that in

this case all nodes become synchronized, except for one

strain (i¼ 40 here), as shown in Fig. 3. The latter strain

exhibits large-amplitude oscillations in both S and I

FIG. 2. Period T and amplitude AI of the limit cycle as a function of the

delay s are shown in panels (a) and (b), respectively. Blue (solid) and red

(dashed) lines correspond to stable and unstable limit cycles, respectively.

The vertical lines mark critical time delays s1 and s2 for the super- and sub-

critical Hopf bifurcation, as well as s3, at which a saddle-node bifurcation of

limit cycles occurs. Parameters as in Fig. 1.

FIG. 3. All-to-all coupling, that is, rij ¼ 1, with the time delay s¼ 25.

Panels (a) show the time series of Si and Ii for N¼ 60 strains, where the soli-

tary strain (here: i¼ 40) is shown in purple. Panels (b) illustrate snapshots at

a fixed time, and panels (c) are the respective space-time plots. Other param-

eters as in Fig. 1.
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variables, which then drive smaller amplitude oscillations in

the S variable for all other strains. As discussed earlier, the

dynamics of such a solitary state can be effectively described

by a reduced two-strain model: one delayed model (5) for

the solitary strain, and one for all other synchronized strains,

as given in Eq. (13).

One should note that due to the above-mentioned ZN

symmetry of the system, the fact that the system has settled

on the strain i¼ 40 being the main driving strain is

completely random and is purely determined by the initial

conditions, as for the same parameter values, any of the other

solitary states is equally possible. The other observation is

that since the system starts with random and independent ini-

tial conditions for all strains, the fact that eventually it settles

on a solitary state suggests that a one-strain invariant mani-

fold described by Eq. (13) is stable. Moreover, since this

corresponds to a situation where in the absence of coupling

all individual strains have the dynamics of a stable limit

cycle, effectively the coupling appears to suppress these

oscillations in a manner similar to symmetry-breaking oscil-

lations death that has been recently studied in time-delayed

systems.58

B. Non-local kernels

By analogy with non-local coupling kernels for which

chimera states have been observed in various systems of cou-

pled oscillators,1,2,59 we focus our attention on two kernels

that represent the biologically realistic scenario where the

more related strains are, the higher is the level of cross-

immunity between them.37,39 The first example is a slightly

modified Gaussian kernel introduced in Gog and Grenfell37

rij ¼ exp �

N

2
�minðjj� ij;N � jj� ijÞ

	 
2

d2

0
B@

1
CA
; (16)

where d is the characteristic length associated with cross-

immunity, and the distance between strains i and j is mea-

sured as the smallest difference on the interval ½1;N� with

periodic boundary conditions. Strains that are genetically

close to each other have a higher value of cross-immunity

1� rij, leading to a decrease in the inflow of the infected

population for the strain at hand. This effect is a combination

of the reduced susceptibility and reduced infectivity due to

various immunological interactions between strains.37,60

Figure 4 illustrates the shape of the kernel rij for different

characteristic lengths d.

A similar reasoning, but with a different biological ratio-

nale, is used in the model of Gomes et al.39 who considered

strains as being distributed on the unit circle with positions

zi ¼ ð2i� 1Þ=2N along the circle, with the kernel being

given by

rij ¼
r
2

1� cos 2pdp min jzj � zij; zN � jzj � zij
� �� �� �� �

;

(17)

with

dpðzÞ ¼ zþ pz z� 1

2

� �
ðz� 1Þ: (18)

The profile of rij depending on the distance between

strains is illustrated in Fig. 5 for different values of param-

eter p.

In the coupling kernel (17), there are two different

parameters that characterize the strain space. First, there is r
(0 � r � 1), which plays the role of the bound on the range

of the strain diversity. Second, there is p which represents

antigenic differences between strains for the given genetic

range. Gomes et al.39 focused on the specific values of

p¼ –2, 0, and 2, but one can prove that parameter p must lie

in the range p 2 ½�2; 4� to ensure rðzÞ has a single maximum

at z¼ 0.5 and two minima at z¼ 0 and z¼ 1, which biologi-

cally means that the strain most genetically different from

the current strain experiences the smallest amount of cross-

immunity.

C. Emergent dynamical scenarios

Below, we present and discuss different patterns

observed in the case of a non-local Gaussian coupling kernel

(16). Figures 6–11 illustrate a modulated-amplitude profile, a

solitary state, a traveling wave, (multi-headed) amplitude

chimeras, and a transition state, respectively. To get a better

insight into the dynamics, in each case the actual time series

is plotted for all N strains, accompanied by a snapshot at a

FIG. 4. Gaussian coupling kernel rij described by Eq. (16) for N¼ 60, with

respect to strain j¼ 30, and three different values of the characteristic length

d¼ 3 (blue circles), 6 (green squares), and 12 (red crosses).

FIG. 5. Cosine coupling kernel r satisfying the continuous form of Eqs. (17)

and (18) for different values of p: p¼ –2 (blue solid), 0 (red dashed), 2

(green dotted), and 4 (black dash-dotted).
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fixed moment in time, a space-time plot, as well as plots of

the average amplitude of oscillations for both dynamical var-

iables. The amplitude is computed as the difference between

maximum and minimum values of the respective variable for

each strain.

Figure 6 shows a regime where all strains oscillate with

the same frequency and without phase shift, but with differ-

ent amplitudes, as is clear from the space-time plots and the

plots of the amplitude. Since many of the I variables stay

equal to zero in a manner similar to all-to-all coupling, while

the frequency of oscillations is the same for S variable for all

oscillators, for I variables it gets adjusted to the frequency of

S variables for those strains that do exhibit oscillations. The

highest amplitude of oscillations occurs in the middle of

modulated profile, suggesting the potential for amplitude

FIG. 6. Modulated profile: time series, snapshots, space-time plots, and

amplitude profiles for system (4) with Gaussian coupling given by Eq. (16).

Coupling parameters are s ¼ 25; d ¼ 14, and r ¼ 0:7, with other parameters

as in Fig. 1.

FIG. 7. Solitary states: time series, snapshots, space-time plots, and ampli-

tude profiles for system (4) with Gaussian coupling given by Eq. (16).

Coupling parameters are s ¼ 42; d ¼ 4, and r ¼ 0:7, with other parameters

as in Fig. 1.

FIG. 8. Traveling wave: time series, snapshots, and space-time plots for sys-

tem (4) with Gaussian coupling given by Eq. (16). Coupling parameters:

s ¼ 25; d ¼ 2, and r ¼ 0:1, with other parameters as in Fig. 1.

FIG. 9. Amplitude chimera: time series, snapshots, space-time plots, and

amplitude profiles for system (4) with Gaussian coupling given by Eq. (16).

Coupling parameters are s ¼ 34; d ¼ 2, and r ¼ 0:7, with other parameters

as in Fig. 1.

FIG. 10. Multi-headed amplitude chimera: time series, snapshots, space-

time, and amplitude profile plots for system (4) with Gaussian coupling

given by Eq. (16). Coupling parameters are s ¼ 28; d ¼ 2, and r ¼ 0:7, with

other parameters as in Fig. 1.

FIG. 11. Transition state between modulated profile and amplitude chimera:

time series, snapshots, space-time plots, and amplitude profiles according to

Eq. (4) with Gaussian coupling given by Eq. (16). Coupling parameters are

s ¼ 26; d ¼ 8, and r ¼ 0:7, with other parameters as in Fig. 1.
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rather than phase chimeras, but since the snapshot of the

modulate profile is smooth, this state cannot be interpreted as

a proper chimera state.61,62 From epidemiological perspec-

tive, this is an interesting state in that all non-zero strains fol-

low synchronous oscillations, namely, they appear and

disappear at the same time. On the other hand, infected frac-

tions have substantially different magnitudes, which means

that immunological interactions between strains results in

some of them always being more dominant (i.e., having a

significantly larger amplitude), whereas other strains are

more suppressed, and this relation between different strains

is repeated with every oscillation.

An exemplary case, where only a few strains exhibit

oscillations of considerable amplitude, is shown in Fig. 7 for

a larger value of time delay s¼ 42 and a smaller characteris-

tic length d¼ 4.

For small coupling strength r and narrow, that is, local,

coupling kernels, we find a traveling wave pattern shown in

Fig. 8. This observation is important from a biological point

of view, as it illustrates a regime of sequential strain domi-

nance, which is often observed in epidemiological data.46,50

In Fig. 9, we illustrate the dynamical regime of an

amplitude chimera. The different strains still oscillate with

the same frequency, but in contrast to the previous pattern,

the snapshots do not exhibit a smooth profile anymore but

rather are represented by two different regions: coherent and

incoherent. It is worth noting that whilst the coupling is still

non-local, the amplitude chimera is observed even when the

characteristic length of the coupling is quite small (d¼ 2).

For the same parameter values but a smaller time delay, the

system can also exhibit a multi-headed amplitude chimera,

characterized by several coherent and incoherent regions

with almost no variation in terms of frequency, but showing

the amplitude profile typical for chimera states. An example

of such state is shown in Fig. 10.

A pattern of transition between an amplitude chimera and

a modulated profile is demonstrated in Fig. 11. Whilst there is

an incoherent region in the middle of strain domain, the edges

of the chimera have a smooth profile similar to that of the

modulated profile, indicating that being a transition, this

regime features the characteristics of both the chimera and the

modulated profile. Similar to the amplitude chimera, the larg-

est amplitude of oscillations for the transition state occurs in

the incoherent regime. It should be noted that transition states

can be found for a whole range of parameter values between

modulated profile and amplitude chimeras, making them

closer in terms of dynamics to either of those states.

Figure 12 provides a summary of different dynamical

states that can be observed in the system (4) depending on the

time delay s and the cross-immunity length scale d. Larger

values of the cross-immunity length scale, that is, broader cou-

pling kernels, are associated with modulated amplitude pro-

files, while, surprisingly, chimera states (single- and multi-

headed) are found for narrower, that is, more local, coupling

kernels. Solitary states in which infections with only a single

strain are present can occur for any lengths of cross-immunity

d, provided the time delay s is sufficiently large.

We have also performed extensive simulations for the

case of cosine kernel (17), and a summary of results is shown

in Fig. 13. Unlike the Gaussian kernel, in this case only mod-

ulated profiles, solitary states, and transition states are

observed, while traveling waves and amplitude chimeras

were never found. The most likely explanation for this lies in

the fact that amplitude chimeras are associated with quite

narrow Gaussian kernel (as described by small values of d),

whereas for the biologically feasible values of parameter

p 2 ½�2; 4�, the distribution (17) is quite broad. In fact, Fig. 5

suggests that the narrowest width of the cosine distribution

corresponds to p¼ –2, which, for a system of N¼ 60 strains,

is equivalent to d¼ 12, and for large values of p, the coupling

is very broad, making it more similar to the situation

described by an all-to-all coupling. As a result, the dynamics

is dominated by modulated amplitude profiles for smaller

durations of temporary immunity, and by solitary states with

single-strain dynamics for larger values of the time delay.

V. DISCUSSION

In this paper, we have studied an important question about

the range of dynamical behaviors that can be exhibited by

multi-strain epidemic models with temporary immunity and

various types of cross-immunity. Whilst the time delay associ-

ated with temporary immunity provides a simple mechanism

supporting stable oscillations in the susceptible and infected

populations for individual disease strains, this dynamics under-

goes major changes under the influence of long-range cou-

pling. Under the assumption of all-to-all coupling, the system

settles on the dynamical regime of solitary states, or single-

strain oscillations, where infections with only one strain are

FIG. 12. Parameter regions of different dynamical regimes for the Gaussian

coupling (16) depending on the time delay s and the standard deviation d.

The blue, green, (dark) red, white and yellow regions refer to states of modu-

lated profile, transition to chimera, (multi-headed) chimera, transition

between modulated and solitary states, and solitary states, respectively. The

markers � indicate the parameter combinations used in Figs. 6, 7, 9, 10, and

11. Other parameters as in Fig. 6.

FIG. 13. Parameter regions of different dynamical regimes for the cosine

coupling (17) and (18) depending on the time delay s and coupling parame-

ter p. The blue, green, white, and yellow regions refer to states of modulated

profile, transition to chimera, transition between modulated and solitary

states, and solitary states, respectively. Other parameters as in Fig. 6.
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present, while all other strains remain equal to zero.

Interestingly, the system approaches such a state for random

initial conditions, suggesting that this state is, in fact, a stable

invariant manifold of the model, which dynamically represents

a symmetry-breaking suppression of oscillations. The complete

symmetry between strains means that the surviving strain is

determined purely by the initial conditions, and for the same

parameter values, all other strains are equally possible.

For the case of Gaussian cross-immunity kernel, the

model exhibits a wide range of dynamical scenarios that

include solitary states, traveling waves, and, most interest-

ingly, single- and multi-headed amplitude chimeras, charac-

terized by some groups of strains oscillating coherently,

while others are performing incoherent oscillations. Whilst

the cosine kernel is also non-local, by virtue of being very

broad, the range of different behaviors for this kernel is

smaller and is more reminiscent of the case of all-to-all cou-

pling. The fact that chimera states were observed only for

sufficiently narrow cross-immunity kernels suggests that in

epidemiological data these types of solutions would only be

observed in the cases where individual strains or serotypes

elicit cross-reactive immune responses against very geneti-

cally similar strains. For multi-strain diseases with a wide

antigenic repertoire, chimera states could be interpreted as

dynamical regimes where a number of closely immunologi-

cally related strains appear to have similar dynamics and

show up concurrently, while other strains have irregular

and unsynchronized oscillations. Understanding parameter

regimes that result in chimera states can provide useful

insights for design and deployment of multi-valent vaccines.
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