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This paper studies the effects of a time-delayed feedback control on the appearance and develop-
ment of spatiotemporal patterns in a reaction-diffusion system. Different types of control schemes
are investigated, including single-species, diagonal, and mixed control. This approach helps to
unveil different dynamical regimes, which arise from chaotic state or from traveling waves. In the
case of spatiotemporal chaos, the control can either stabilize uniform steady states or lead to
bistability between a trivial steady state and a propagating traveling wave. Furthermore, when the
basic state is a stable traveling pulse, the control is able to advance stationary Turing patterns or
yield the above-mentioned bistability regime. In each case, the stability boundary is found in the
parameter space of the control strength and the time delay, and numerical simulations suggest that
diagonal control fails to control the spatiotemporal chaos. © 2009 American Institute of Physics.
�doi:10.1063/1.3270048�

Various real-life systems exhibit complex dynamical re-
gimes, including spatial patterns and spatiotemporal
chaos. An important issue is the possibility of attaining a
desired state by means of some external influence on the
system. Time-delayed feedback uses the difference be-
tween current state of the system and its state some time
ago to provide an efficient tool to control system’s dy-
namics. In particular, this approach allows one to effec-
tively switch between different spatiotemporal regimes in
the system. In this paper, we show how the time-delayed
feedback control can be used to control spatiotemporal
chaos, as well as to provide a transition from traveling
waves to stationary periodic patterns.

I. INTRODUCTION

Spatially extended systems arise in modeling of various
physical, biological, chemical, and engineering phenomena,
and an ultimate understanding of such systems gives one the
ability to control them in order to achieve desired behavior
or spatial patterns. Since many systems in nature exhibit in-
trinsic chaotic behavior, control of chaos in spatially ex-
tended systems has recently become an active and important
area of research.

Control of a dynamical system in a chaotic state usually
requires application of some external perturbation in order to
achieve a desired type of behavior, such as a steady state,
regular, or quasiperiodic oscillations. A number of different
methods and techniques have been suggested in order to con-
trol chaos.1 For systems without spatial extension, standard
approaches include the Ott–Grebogi–Yorke scheme2 and
time-delayed feedback control �TDFC�.3 TDFC schemes are
straightforward to implement and can also be adapted to con-
trol spatially extended systems. These schemes are based on
the use of the difference between the system variables at the

current moment of time and their values at some time in the
past. For low-dimensional systems, TDFC has been success-
fully used to stabilize unstable steady states,4–6 as well as
unstable periodic orbits7 in a number of physical and biologi-
cal systems.1

More recently, TDFC has been used to control spa-
tiotemporal chaos and pattern formation in chemical reac-
tions. Close to the onset of uniform oscillations, it is possible
to reduce any reaction-diffusion system to an amplitude
equation, called the complex Ginzburg–Landau equation
�CGLE�.8 The CGLE helps to understand the underlying dy-
namics of the reaction-diffusion systems close to the bifur-
cation point, however, it does not provide a lot of informa-
tion about the dynamics far away from the onset of
oscillations. Beta and Mikhailov have shown analytically
that global TDFC cannot stabilize uniform oscillations when
the system is in the spatiotemporally chaotic regime.9,10 At
the same time, local time-delay feedback control which also
includes spatial feedback terms has been shown to be effec-
tive in stabilizing traveling waves in CGLE in one and two
spatial dimensions.11,12

In globally coupled reaction-diffusion systems, which
arise in modeling semiconductor nanostructures, global or
local TDFC and its various modifications have proven
successful in stabilizing unstable spatiotemporal
oscillations.13–15 Unstable rigid rotation of spiral waves has
also been stabilized by TDFC.16 Pulse propagation in the
FitzHugh–Nagumo reaction-diffusion model has recently
been shown to be controllable by local TDFC or nonlocal
instantaneous feedback.17

From a practical perspective, there are several issues that
have to be taken into account when considering implemen-
tation of specific TDFC schemes. One such aspect concerns
the spatial range over which the control has to be applied.
Ahlborn and Parlitz18 have recently shown how one can use
multiple time-delayed control applied at a number of control
points to stabilize plane waves in the CGLE, while Bleicha�Electronic mail: y.kyrychko@bristol.ac.uk.
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and Socolar19 have illustrated stabilization of periodic orbits
in chaotic CGLE using local control. Another problem is that
most examples of TDFC for spatially extended systems such
as, for instance, one-dimensional chaotic CGLE �Ref. 19�
and spatiotemporally chaotic semiconductor laser arrays,20

use diagonal control with symmetric gain, which may be
quite restrictive. In the case of optical systems such as laser
devices it is possible to have a nondiagonal coupling, real-
ized experimentally using an optical phase as an additional
control parameter.4,6 Hence, it is important to consider the
influence of various TDFC schemes on the dynamics of the
system and analyze different types of spatiotemporal dy-
namical regimes that can be achieved.

In this paper we perform a systematic study of the ef-
fects of local TDFC on spatiotemporal dynamics in a two-
component reaction-diffusion system. As a testbed for this
analysis we use the paradigmatic Gray–Scott model derived
in the context of chemical reactions. It has already been
shown using extensive numerical simulations that the Gray–
Scott model supports a wide range of spatiotemporal dynam-
ics, including stationary inhomogeneous patterns, traveling
fronts and pulses, as well as spatiotemporal chaos. A particu-
lar feature of this system, which makes it different from
other reaction-diffusion models, is the occurrence of pulse
splitting, where a traveling pulse leaves in its wake other
pulses propagating in different directions.

The outline of this paper is as follows. In Sec. II we
introduce the Gray–Scott system. Section III contains an
analysis of the effects of TDFC on spatiotemporal chaos. In
Sec. IV various TDFC schemes are applied to propagating
pulses. The paper concludes with a summary of our findings,
together with a consideration of their implications.

II. GRAY–SCOTT SYSTEM

In order to analyze the effects of TDFC on the spa-
tiotemporal dynamics in reaction-diffusion systems, we con-
sider the Gray–Scott model, which describes a cubic auto-
catalytic chemical reaction of the type21

U + 2V → 3V, V → P , �1�

where U is continuously supplied into an open flow reactor,
and the product P is removed. The first equation represents
an autocatalytic process, in which two molecules of species
V produce 3V through interaction with a molecule of species
U. If the system were closed, then by virtue of irreversibility
of the two reactions, all reactants would eventually turn into
a product and be removed. However, when the reactor is
continuously fed with a uniform flow of species U, it is pos-
sible to maintain far-from-equilibrium conditions, in which a
wide range of possible dynamics can be observed. In experi-
ments, a gel is used as a medium to prevent the occurrence of
convective currents.22 The kinetic equations for the system
�1� can be written after some rescaling as

�u

�t
= − uv2 + a�1 − u� + Du�

2u = f�u,v� + Du�
2u ,

�2�
�v
�t

= uv2 − �a + b�v + Dv�
2v = g�u,v� + Dv�

2v ,

where u and v are the concentrations of the species U and V,
respectively, a is the inflow rate, a+b is the removal rate of
V from the reaction, and Du and Dv are the diffusion coeffi-
cients of the two species.

The system �2� can possess up to three homogeneous
steady states. There is a trivial steady state,

E0 = �u0,v0� = �1,0� , �3�

which exists for all parameter values and corresponds to a
steady flow without reaction. Provided

d � 1 − 4�a + b�2/a � 0, �4�

the system has two nontrivial steady states,

E1 = �u1,v1� = �1

2
�1 − �d�,

1

2

a

a + b
�a + �d�� �5�

and

E2 = �u2,v2� = �1

2
�1 + �d�,

1

2

a

a + b
�1 − �d�� . �6�

Linear stability analysis indicates that the trivial steady
state E0 is always linearly stable �even with respect to spa-
tially inhomogeneous perturbations�, while the steady state
E2 is unstable with respect to homogeneous perturbations for
any parameter values for which it exists. Figure 1 shows a
bifurcation diagram for the spatially homogeneous Gray–
Scott model, as well as a phase diagram in �a ,b� space. One
of the features is that when the inflow a is large enough
�a�1 /4�, the production of V is suppressed, and as a result
the only fixed point of the system is the trivial steady state
E0, as shown in Fig. 1�a�.

In Fig. 1�b� the saddle-node bifurcation curve is given by
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FIG. 1. �a� Bifurcation diagram of the Gray–Scott system �2� without dif-
fusion. Solid lines correspond to stable steady states, dashed to the unstable
steady state E2, dotted to the Hopf unstable steady state E1, and dot-dashed
indicates a saddle-node �SN� line. The cross �X� indicates the location of the
Takens–Bogdanov point. �b� Phase diagram in �a ,b� space. Solid line is the
boundary of saddle-node bifurcation, dotted line is the boundary of Hopf
bifurcation, and dot-dashed line is Turing instability boundary. TB is the
Takens–Bogdanov point.
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aSN = 1
8 �1 − 8b � �1 − 16b� . �7�

To the right of aSN only the trivial steady state E0 exists. As
aSN is crossed, two more states E1 and E2 appear. While the
state E2 is always unstable, the fixed point E1 may lose its
stability via a Hopf bifurcation. The boundary of this bifur-
cation is given by23

aH = 1
2 ��b − 2b − �b�1 − 4�b�� . �8�

This boundary starts at �a ,b�= �0,0� and follows the lower
branch of the saddle-node curve until it coincides with it at a
Takens–Bogdanov point �a ,b�= �1 /16,1 /16�. The steady
state E1 is stable above the Hopf boundary and unstable be-
low it. It is noteworthy that the stability of the limit cycle
that appears due to the Hopf bifurcation varies along the
Hopf curve: it is stable for b�0.035 and unstable for
b�0.035.

Another way in which a state E1 may lose its stability is
via a Turing bifurcation, which may give rise to stationary
inhomogeneous patterns. Linear stability analysis in this case
shows that the Turing bifurcation occurs when the ratio of
the two diffusion coefficients �=Du /Dv satisfies the
condition23

���a + b� − �v1
2 + a��2 � 4��a + b��v1

2 − a� , �9�

where v1 is the steady state value of the species V given in
Eq. �5�. The higher �, the wider is the region in �a ,b� space
where Turing bifurcation can be observed. The steady state
E1 is stable with respect to spatially inhomogeneous pertur-
bations above the Turing boundary and unstable below it.
For sufficiently high values of �, the boundary of Turing
bifurcation will move above the boundary of Hopf bifurca-
tion. For �=2, which will be used in numerical simulations
later in this paper, the region of Turing instability is almost
entirely contained within the parameter region of Hopf insta-
bility, as shown in Fig. 1�b�. Interaction of these two insta-
bilities gives rise to spatiotemporal chaos and mixed modes
having time-dependent spatial structures.23,24 In Fig. 1�b�, the
region of spatiotemporal chaos is narrow and bounded by the
Turing boundary from the top and the saddle-node curve
from the bottom. It is noteworthy that very close to the
Takens–Bogdanov point one has a Turing instability where
stationary inhomogeneous patterns are observed.

It has already been mentioned that the Gray–Scott sys-
tem exhibits a wide range of dynamical behaviors. In the
parameter regime away from Turing and Hopf areas, the sys-
tem always ends up in either the homogeneous trivial steady
state E0 or state E1. The simplest inhomogeneous state is
represented by a stationary nonuniform pattern arising from
a Turing bifurcation. Besides these temporally stationary
structures, the Gray–Scott system is able to support standing
or traveling waves and fronts �the latter refer to heteroclinic
connections between E0 and E1�. Traveling waves occur in
the parameter region outside the saddle-node boundary. At a
higher level of complexity are the mixed modes, describing
time-dependent spatial structures, the so-called self-
replicating patterns and spatiotemporal chaos.24 The self-

replicating patterns represent heteroclinic connections be-
tween the trivial homogeneous state and a spatially periodic
pattern.

III. CONTROL OF SPATIOTEMPORAL CHAOS

In this section we concentrate on the parameter regime
where the system exhibits spatiotemporal chaos and consider
several schemes for the control of this state based on TDFC.
This approach has already been used to control spatiotempo-
ral chaos in globally coupled reaction-diffusion systems,13,15

as well as in reaction-diffusion systems with global
control.9,25

Formally, the locally controlled Gray–Scott model can
be written as

�

�t
�u

v
� = � f�u,v�

g�u,v�
� + �Du 0

0 Dv
��2�u

v
�

+ KA�u�t − �� − u�t�
v�t − �� − v�t�

� , �10�

where K is the control strength which can be either positive
or negative, ��0 is the time delay, and A is a 2�2 matrix
which describes the particular coupling of the control term.
First we consider the case when the control of each variable
depends only on the history of that variable. For single-
species control, the matrix A takes the form

Au = �1 0

0 0
� or Av = �0 0

0 1
� �11�

for control only in u �activator control� and only in v �inhibi-
tor control�, respectively.

In the case of activator control, we look for solutions of
the system �10� linearized near E1= �u1 ,v1� in the form

�ũ

ṽ
� = �C1

C2
�eiqx+�t,

where u=u1+ ũ, v=v1+ ṽ, C1,2 are constants, q is the wave-
number of the perturbation, and � is the corresponding
growth rate. Substituting this into the system �10� with Au

from Eq. �11� yields the following characteristic equation:

	− v1
2 − a − Duq2 + K�e−�� − 1� − � − 2�a + b�

v1
2 a + b − Dvq2 − �

	 = 0.

�12�

In the absence of control �K=0�, it follows from this equa-
tion that the uniform mode with q=0 is the most unstable,
i.e., it has an eigenvalue with the largest positive real part.
Since the diffusion plays a stabilizing role, all other modes
with q�0 will be more stable, as is confirmed by numerical
solution of Eq. �12� shown in Fig. 2. For this reason, it suf-
fices to control the uniform mode q=0 to achieve complete
stabilization of the steady state E1 for any spatially inhomo-
geneous perturbation. When q=0, Eq. �12� can be written as

�2 + ��v1
2 − b − K�e−�� − 1�� + �a + b��v1

2 − a + K�e−�� − 1��

= 0. �13�

In order to find the control strength K that can stabilize the
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steady state E1 for each value of the time delay �, we com-
pute the stability boundary in the �K ,�� plane by setting
�= i� in Eq. �13�. Separating real and imaginary parts gives
the following system:

− �2 + �a + b��v1
2 − a − K� − K� sin �� + �a + b�K cos ��

= 0,

��− b + v1
2 + K� − �K cos �� − �a + b�K sin �� = 0.

This system can be solved to yield the pair �K ,�� as param-
etrized by �,

K = −
1

2

��a + b�2 + �2���a − v1
2�2 + �2� − 4�2bv1

2

�a − v1�2�a + b�2 + �2�a + v1
2�

,

�14�

� =
1

�

arctan�2�

K
−

4�a + b�v1
2�

K��a + b�2 + �2�
� � n	�,

n = 0,1,2, . . . ,

where arctan corresponds to the principal value of arctan. We
are only interested in the branch n=0, as for other values of
n the corresponding control term in the system �10� will be
very large compared to other terms, making it unfeasible for
practical purposes. In Fig. 2�a� we show this stability bound-
ary, which corresponds to q=0, together with stability

boundaries when spatially inhomogeneous perturbations are
taken into consideration. For any q�0, these boundaries lie
below the stability boundary for the uniform mode, as we
have explained earlier. Figure 2�b� shows the results of com-
putation of the stability boundary in the �K ,�� plane for in-
hibitor control. One can note the approximate symmetry be-
tween the stability boundaries for activator and inhibitor
control up to a reverse of the sign of the control strength.
This is due to the fact that the inhibitor control would result
in the characteristic equation similar to Eq. �13�, but with the
term �a+b�K�e−��−1� being replaced by −�v1

2+a�K�e−��−1�,
where the difference in the absolute values of �a+b� and
�v1

2+a� is less than 10%. Finally, we note that it is only
possible to stabilize the steady state E1 for negative values of
the control strength K in the case of activator control and
only for positive K in the case of inhibitor control.

In order to understand the full dynamics of the system
�10� with TDFC, we solve this system numerically and
record the ultimate stage of time evolution. System param-
eters are fixed and taken to be Du=2�10−5 and Dv=10−5,
while kinetic parameters are a=0.028 and b=0.053. In each
case we solve system �10� on an interval of length L=2.5
using an explicit Euler scheme with a spatial resolution of
256 mesh points, a time step of 
t=0.05, and periodic
boundary conditions. Initial conditions are chosen to be a
random localized perturbation of E0 in the middle of the
domain which then evolves into a spatiotemporally chaotic
state. After the spatiotemporal chaos has developed, control
is switched on at t=3000 and its effects on the time evolution
are studied. Time durations of each run are 6000 in the re-
gime of spatiotemporal chaos and 7000 in the case of control
of traveling waves.

The results of numerical simulations of activator/
inhibitor control are shown in Figs. 3�a� and 3�b�. First of all,
one can note a characteristic scaling of �K��1 /�, which is
quite natural bearing in mind that if the time delay is small,
then the absolute value of the difference �u�t−��−u�t�� �or
�v�t−��−v�t��� is small, and therefore a much higher value of
the control strength �K� is required to achieve a significant
effect on the dynamics. In the case of activator control with
K�0 or inhibitor control with K�0, the only possible tran-
sition is from a spatiotemporally chaotic state to a nontrivial
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FIG. 2. �Color online� Stability boundaries of the homogeneous steady state
E1 from the characteristic equation �12�. In both cases, the steady state E1 is
stable above the boundary for q=0 described by Eq. �14�. �a� Activator
control. �b� Inhibitor control. Parameter values are a=0.028, b=0.053,
Du=2�10−5, and Dv=10−5.
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FIG. 3. �Color online� Control domain of spatiotemporal chaos. �a� Activator control. �b� Inhibitor control. �c� Phase diagram for nondiagonal control �15�.
�a� Specific final states are: the spatiotemporal chaos �black�, to the right of it is a stable mixed �Turing-Hopf� state �pink�, followed by an area of coarsening
�green� and a bistability between traveling waves and a trivial steady state E0 �red�. In the area to the left of the black region the final state is a uniform
non-trivial steady state E1 �yellow�. In �b� and �c� the order of regimes from left to right is reversed. Parameter values are a=0.028, b=0.053, Du=2
�10−5, and Dv=10−5.

043126-4 Kyrychko et al. Chaos 19, 043126 �2009�

Downloaded 10 Dec 2009 to 137.222.10.58. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



homogeneous state E1, as shown in Fig. 4. One should note
that when the control strength is not sufficiently large, the
system remains in the spatiotemporally chaotic state, as
shown in Fig. 4�a�. The numerical boundary separating spa-
tiotemporally chaotic state from a stable nontrivial homoge-
neous state shown in Figs. 4�a� and 4�b� coincides with an
earlier found analytical expression for this boundary given
by Eq. �14�.

In the opposite case, for activator control with K�0 or
inhibitor control with K�0, when the control strength �K�
and the time delay � are sufficiently small, the system re-
mains in the state of spatiotemporal chaos �see Fig. 5�a��. For
higher values of �K�� one observes stable mixed or Turing–
Hopf modes shown in Fig. 5�b�. These states are character-
ized by both spatial and temporal periodicities. Earlier work
on codimension two Turing–Hopf states suggests that generi-
cally these are quite stable close to the Turing–Hopf bound-
ary, and away from it they turn into either pure Hopf oscil-

lations or Turing structures.26–28 In the case of the Gray–
Scott system this does not happen as the Turing instability
boundary is completely enclosed inside the region of Hopf
instability.

For yet higher values of �K��, isolated regions coalesce,
and the system exhibits coarsening, as shown in Fig. 5�c�.
Further increase in �K�� leads to a bistability between a ho-
mogeneous trivial state E0 or a localized pulse traveling with
a constant velocity. This bistability here refers to a regime
where for the same values of parameters and random initial
conditions, the system will evolve either as shown in Fig.
5�d�, i.e., develop into a localized pulse, or it will develop in
a manner qualitatively similar to the one shown in Fig. 4�b�,
except that the evolution leads to a uniform trivial steady
state E0. We also note that the time-delayed feedback of the
form used in Eq. �10� is noninvasive only in the case of
stabilization of a uniform steady state E1. In all other situa-
tions, although the feedback term does not vanish, its norm
constitutes less than 10% compared to other terms in the
system �10�.

Another possibility of control is the so-called diagonal
control, which corresponds to the unity coupling matrix A.
This type of control has been successfully used to stabilize
unstable spatiotemporal breathing in a reaction-diffusion
model for the double barrier resonant tunneling diode.15 Nu-
merical simulations suggest that for the Gray–Scott model
this type of control does not qualitatively affect the dynamics
as it leaves the system in a spatiotemporally chaotic state for
any values of the control strength K and the time delay �.

In the case of nondiagonal control that involves both
species we introduce a variable phase � into the coupling
matrix as follows:

A = � cos � sin �

− sin � cos �
� . �15�

Such kind of control occurs, for example, in laser systems,
where the optical phase can be used as an additional control
parameter.6,29 Figure 3�c� shows that for this type of control,
the final state of the system is completely determined by the
sign and size of nondiagonal control terms and shows no
dependence on the values of the diagonal coupling terms. It
is worth noting that in the case of negative feedback
�−	
�
0�, i.e., when the roles of activator and inhibitor in
the control term are reversed, one observes a range of pos-
sible dynamical regimes, such as stable Turing–Hopf modes,
coarsening and bistability between traveling waves and a
trivial steady state E0. On the other hand, for positive feed-
back with 0
�
	, the only possible transition is from a
spatiotemporally chaotic state to a uniform nontrivial steady
state E1.

Beta and Mikhailov have previously shown for the
CGLE that in the Benjamin–Feir regime, which gives rise to
spatiotemporal chaos, the global TDFC is unable to stabilize
uniform oscillations.9 Our simulations suggest that a similar
conclusion holds for local time-delayed feedback: while it is
possible to recover homogeneous states, as well as stable
mixed modes, it appears impossible to stabilize uniform os-
cillations in a reaction-diffusion system.

FIG. 4. �Color online� Space-time plot in the case of activator control.
�a� Spatiotemporal chaos. �b� Nontrivial steady state E1. The color code
corresponds to the values of u�x , t�. Parameter values are a=0.028,
b=0.053, Du=2�10−5, Dv=10−5, �a� K=−0.4, �=0.1 and �b� K=−0.8,
�=0.6. Control is switched on at t=3000.

FIG. 5. �Color online� Space-time plot in the case of inhibitor control.
�a� Spatiotemporal chaos. �b� Mixed �Turing–Hopf� mode. �c� Coarsening.
�d� Transition to traveling waves. Parameter values are a=0.028, b=0.053,
Du=2�10−5, Dv=10−5, �a� K=−0.05, �=0.3, �b� K=−0.3, �=0.35,
�c� K=−0.4, �=0.4, and �d� K=−0.6, �=0.75. Control is switched on at
t=3000.
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IV. CONTROL OF TRAVELLING WAVES

In this section we consider a situation when without con-
trol the system supports stable traveling waves. By virtue of
choosing periodic boundary conditions, if there is more than
one pulse in the interval, all pulses are elastically reflected
from each other and move without changes through the
boundaries.

As before, we start our analysis by considering single-
species control of the form �11�, and the results are shown in
Figs. 6�a� and 6�b�. In the case of activator control with
K�0 or inhibitor control with K�0, the stable traveling
waves are eventually transformed into stable spatially peri-
odic Turing patterns by means of wave splitting, as shown in
Fig. 7�a�. As has been noted by Petrov et al.,30 this happens
due to the fact that the medium becomes saturated with
waves which are reflected from each other. Numerical simu-
lations suggest that the higher the value of �K��, the longer it
will take for the wave splitting to result in a stationary spa-
tially periodic pattern and that TDFC can stabilize unstable
multispike steady states. This provides a mechanism of trans-
formation from a stable propagating pulse to a stable Turing
pattern. Finally, we note that the activator �K�0� or inhibi-
tor �K�0� control shown in Figs. 6�a� and 6�b� can only
provide the bistability between a homogeneous trivial state
E0 and traveling waves. For illustration purposes, we show in

Fig. 7�b� the transition to stable traveling pulses, however, in
the same parameter regime the system may also evolve into
a homogeneous state E0.

Figure 6�c� shows the effects of mixed control on the
dynamics of traveling waves with some similarity to the ear-
lier picture of mixed control of spatiotemporal chaos �Fig.
3�c��. There is still almost no dependence on the strength and
sign of activator control, but the region of stationary Turing
patterns is noticeably larger than that of bistability between a
homogeneous trivial steady state E0 and a traveling wave. As
in the case of spatiotemporal chaos, the diagonal control of
traveling waves does not qualitatively change the dynamics,
and the system remains in the state of supporting elastic trav-
eling waves.

When compared to recent work on TDFC of traveling
pulses in the FitzHugh–Nagumo model,17 our results show
both some similarities and also certain differences. In both
cases, the control domain of the inhibitor control is smaller
than that of the activator control. It is worth noting that in
Ref. 17 nondiagonal control was not applied in the form of
mixed control �15�, involving both activator and inhibitor
variables, but was in the form of

A = �0 �1

0 0
� �uv − control�

or

A = � 0 0

�1 0
� �vu − control� .

Suppression of the traveling pulse in case of uv-control was
only possible for the minus sign, while in case of vu-control
suppression was only found for the plus sign, following a
strict symmetry with respect to the operation K→−K. In
some sense this is similar to Fig. 8 where the uniform steady
state �red� can be stabilized only for negative uv feedback or
positive vu feedback.

The main difference, however, is that the nondiagonal
control of traveling pulses in the Gray–Scott model in the
form Eq. �15� is successful for both signs of the control
strength K, even though for one sign of K it produces sta-
tionary Turing patterns and for another it leads to a homoge-
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FIG. 6. �Color online� Phase diagram for control of traveling waves. �a� Activator control. �b� Inhibitor control. �c� Phase diagram for nondiagonal control �15�
of traveling waves. �a� Specific final states are: the middle region is a stable traveling wave �beige�, to the left of it is a stationary Turing pattern �cyan�, and
to the right is a bistability between traveling waves and a trivial steady state E0 �red�. In �b� and �c� the order of regimes from left to right is reversed.
Parameter values are a=0.022, b=0.053, Du=2�10−5, and Dv=10−5.

FIG. 7. �Color online� Space-time plot of control of traveling waves.
�a� Activator control: Development of a stationary Turing pattern. �b� Inhibi-
tor control: Transition to traveling wave. Parameter values are a=0.022,
b=0.053, Du=2�10−5, Dv=10−5, �a� K=−0.5, �=0.6 and �b� K=−0.8,
�=0.4. Control is switched on at t=3000.
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neous trivial steady state E0. Finally, we note that vu-control
is able to stabilize the uniform steady state or stationary Tur-
ing patterns for significantly smaller values of K and � as
compared to uv-control. Also, Fig. 8 shows that the roles of
activator and inhibitor are reversed for the same values of K
and � when compared to Fig. 6.

V. CONCLUSIONS

In this paper we have studied the effects of TDFC on the
dynamics of the Gray–Scott model. When the original sys-
tem is in the spatiotemporally chaotic state, an activator con-
trol with K�0 or inhibitor control with K�0 transforms it
into a homogeneous nontrivial steady state E1. A much wider
range of possible states can be reached for an activator con-
trol with K�0 or inhibitor control with K�0, and these
include the stable mixed Turing–Hopf modes, coarsening, as
well as a regime of bistability between a stable pulse and a
homogeneous trivial state E0. Diagonal control appears to be
ineffective as it cannot control the spatiotemporal chaos. For
mixed type of TDFC, the simulations suggest that the sign of
nondiagonal terms in the coupling matrix plays a crucial role
in determining the final state of the system. As in the case of
global TDFC, the local control is unable to stabilize uniform
periodic oscillations.

When the TDFC is applied to traveling pulses of the
Gray–Scott model, there are two possibilities for the final
state. Activator control with K�0 or inhibitor control with
K�0 transforms the system into a regime of wave splitting,
and after the medium is saturated with the waves, it settles
on a stationary spatially periodic Turing pattern. The higher
is the value of �K��, the longer it takes for the system to reach
such a pattern. On the other hand, activator control with
K�0 or inhibitor control with K�0 suppresses spatial inho-
mogeneities and provides bistability between a stable travel-
ing pulse and a homogeneous trivial state, similar to the con-
trol of spatiotemporal chaos.

The control schemes studied in this paper can be used
for control of spatiotemporal chaos in other spatially ex-
tended systems. While stabilization of uniform periodic os-
cillations may remain elusive, local TDFC can provide a
variety of interesting dynamical regimes, from stationary
patterns to mixed modes and traveling localized pulses. Nu-
merical simulations suggest that in many cases the control
strength does not have to be very high, provided time delay
is large enough. This interplay between the control strength
and time delay should prove beneficial for the development
of experimental implementation of specific control schemes.
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FIG. 8. �Color online� Phase diagram for control of travelling waves.
�a� Activator uv-control. �b� Inhibitor vu-control. �a� Specific final states are:
the middle region is a stable traveling wave �beige�, to the left of it is a
bistability between traveling waves and a trivial steady state E0 �red�, and to
the right is a stationary Turing pattern �cyan�. In �b� the order of regimes
from left to right is reversed. Parameter values are a=0.022, b=0.053, Du

=2�10−5, and Dv=10−5.
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