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Transverse instability and its long-term development for solitary waves of thg 2+ 1)-dimensional
Boussinesq equation
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The stability properties of line solitary wave solutions of the~(R)-dimensional Boussinesq equation with
respect to transverse perturbations and their consequences are considered. A geometric condition arising from
a multisymplectic formulation of this equation gives an explicit relation between the parameters for transverse
instability when the transverse wave number is small. The Evans function is then computed explicitly, giving
the eigenvalues for the transverse instability for all transverse wave numbers. To determine the nonlinear and
long-time implications of the transverse instability, numerical simulations are performed using pseudospectral
discretization. The numerics confirm the analytic results, and in all cases studied, the transverse instability
leads to collapse.
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I. INTRODUCTION sev and Petviashvili7] on the transverse instability of the
Korteweg-de Vries soliton. Since then, the transverse insta-
One of the fundamental ways that a solitary wave travelbility of solitary waves has been investigated for a wide
ing in one space dimension generates a two-spacgange of models; examples include the nonlinear Stihger
dimensional pattern is through transverse instability. A trans{NLS) equation and related equation§8—10], the
verse instability of a line solitary wave is associated with akadomtsev-Petviashvili equatiofll-14, the Zakharov-
class of perturbations traveling in a direction transverse t&uznetsov equatiofi9,15,14, and water wave§l7]. A re-
the basic direction of propagation. In addition to establishingview of the transverse instability for the NLS equation and
the existence of the transverse instability, a major question isther related models can be found in the work of Kivshar and
what implications this instability has for the long-term be- Pelinovsky[14].
havior of the system: does it settle into a new two-space- In this paper, we will first use a geometric condition as
dimensional pattern, or collapse? In this paper, we study thiderived in Ref.[16] to get an explicit criterion for small
sequence of questions for the canonical Boussinesq equatiatansverse wave number instability. For this we use the mul-

in two space dimensions, tisymplectic formulation of Eq(1) in an essential way. To
get detailed information for all transverse wave numbers, we
U= (F(U) + Uy Juxt aUyy, (1) compute explicitty the Evans function for the

(2+1)-dimensional Boussinesq model linearized about a
wheres=+1 and o=*+1. In general,f(u) can be any |arger family of line solitary wavegallowing the state at
smooth function, but the canonical form of the Boussinesqnfinity to be nonzerp Plots of the dependence of the growth

equation has the form rate on the transverse wave number are presented.
5 ) The postinstability behavior of the nonlinear problem is
f(uy=D(u"—u) with D==*1. studied using direct numerical simulation. The numerical

. ) evidence confirms the analytic results and suggests that the
WhenD=-1, ¢=1, ando=1, this equation was de- postinstability in the nonlinear system leads to collapse in all
rived by Johnsori1] to describe the propagation of gravity cases. A multisymplectic pseudospectral discretizdti@his
waves on the surface of water, in particular, the head-ofsed as a basis for the numerical simulations. The numerical
collision of oblique waves, and it was derived by Breizmanscheme is applied to the full two-dimensional PDE and we
and Malkin[2] in the context of Langmuir waves. observe transverse modulation and further development of
In the absence of the transverse variatiod, u,=0) and  the |ongitudinal and transverse instabilities, resulting in the
for e=—1, D=—1 this equation reduces to the so-calledcollapse of the initial line solitary waves. In the parameter
“‘good” Boussinesq equation, which is well posed, and for region where the analytic criterion indicates that the solitary
which sech solutions exist for any with [c|<1. These wave state is longitudinally stable but transversely unstable,

waves are stable whei<|c[<1 [3]. For the caséc|<3 it simulations support the analytic results and provide insight
was shown by computer-assisted simulation of the leadingnto the long-term development of this instability.

term in the Taylor expansion of the Evans function that there
is an unstable eigenvalyd]. This result was generalized to
include solitary waves with nonzero tails, and rigorously
proved using the symplectic Evans matrix in Ré].

The transverse instability of solitary waves has been The Boussinesq system has a range of geometric struc-
widely studied since the seminal work of Zakhar®} on  tures. First, we record the Lagrangian and Hamiltonian struc-
the nonlinear Schidinger equation and the work of Kadomt- tures. Letu= ¢,,, then the system is Lagrangian with

II. MULTISYMPLECTIFYING THE EQUATIONS
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1, i 0 0 1 0
L= _§¢xt+F(¢xx)+§8¢xxx+§U¢xy dxdydt 0 0 0 0 1 0
. . o 0 0 0 0 01
whereF(-) is any function satisfying-'(-)="f(-). K= '
The Boussinesq equation can be represented as a Hamil- -1 0 0 00O
tonian system in a number of waye.g., Ref.[19]). For -1 0 0 0 O
example, let 0 0 -1.0 0 0
1 2 1 2 1 2
H=f F(U)_§8Ux+ §®X+ any+y(u—wx) dxdy, 0 01 00
2 0O 0 0 O 0O
-1 0 0 0 0 O
where y is a Lagrange multiplier associated with the con- L= o 000 0 ol
straintu=w, . With Hamiltonian variables®,u,w,y), the
governing equations take the form 0 00 0 OO
0O 0 0 O 0O
_oH ®
s T P 1,1, o,
S(Z)==F(a) = 5-P1+ 5P~ 5 P3-
qbt=5—u =f(u)+euy+y, Using gq;=u it is straightforward to show that this system is
3) a reformulation of Eq(1).
SoH
0= Sw o Vx T TWyys [ll. GEOMETRIC CRITERION FOR THE TRANSVERSE
INSTABILITY
SH An advantage of the multisymplectic formulation is that
0= 5_y: U—Wy. there is a geometric condition which is easy to verify for the

transverse instability of line solitary waves6).
Consider the well-known basic family of solitary waves

However, the most interesting form of El) for the o £q. (1) of the form

present purposes is the multisymplectic formulation, which
can be represented in the canonical fg20]

Z(x,y,t)=2(6;c,l), 6=x—ct+ly+ 6, (5)
- 6
MZ+KZ+L2,=VS(2), ZeR® @ optained by taking the first component to be a $eghve,
where u(d;c,)=(ey, 2(6;c,)y=A(c,l) sechB(c,) 6], (6)
1 with
a2
a3 B(c |)=1\/S(D+c2—a|2) A(c |)=6332
Z= , ' 2 ' ' D
P1
P2 The existence of the solitary wave clearly require
Ps3 +¢?—01?)>0. The other components & are easily ob-
tained from Eq.(6) and the multisymplectic equatior§).
0O 1. 0 0 O For the linear stability analysis, le(x,y,t)=2(6;c,1)
10000 0 +RqU(;\,k)eM ] substitute this into Eq4) and lin-
earize. Then, if the resulting linear equation has square-
0O 0 0 0 0 O . integrable solutions) (4;\,k) with Re(\)>0 andke R, we
M= 0O 0 0 O 0O with call the basic solitary wave sta&( 0;c,l) transversely un-
0 00 OO O stable. Assuming thaig is the only square integrable ele-
ment in the kernel of the linearization operatd+ D?S(Z)
0 00000 —[K—=cM+IL](d/d#), we have the following geometric
condition of the transverse instability for smallandk. Sup-
u(x,y,t)=qa(xy,t), pose
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FIG. 1. Theoretical boundaries of the transverse instability for the “good” Boussinesq equaji@ase(14) with o= 1. The waves are
unstable for the parameters lying within the shaded regi@nsCase(15) with o= —1. The waves are unstable for the parameters within
the circle.

A A 10> . . eo(40l?—4c?—~D)>0, (11
>0, where Az——f (MZ,,2)dé,
B B 2) . . - -
then the basic solitary wave(Z;c,l) is linearly transversely
1 (= unstable
B==| (LZ,,2)de. (7 The multisymplectic formulation also provides an expres-
2) - sion for the linear growth rate of the instabilityas a func-

~ tion of the transverse wave numbefor long-wave pertur-
Then the basic solitary wavg(;c,) of Eq. (1) is linearly  bations[16]:
transverse unstable.6,17.

Using the above definitions of the multisymplectic matri- VAL — A B, 5
cesM andL, we obtain A= | A k+0(k)
1= d J=0(401?—4c?+1)(o1?—c?+ 1)
A=——f (ql G2 U275 ql) f qidé = +0(K?).
2)- do de 4 —1— 0'|2 ( )
=—cK, (8) (12
1 (o d d This provides the growth rate fde small. In the following
B= —f 015=03— 0350 |dO= alf q; 2d9=0glK, section, the Evans function will be constructed in order to
2 de de :
9 determine the growth rate for all transverse wave numkers
©) In the remainder of this section, we apply conditidr)
where for various parameter values.
For the good Boussinesq equation from Ré&f with &
= 4 A2 6e =—1 andD=—1 the existence and transverse instability
K= J’ uldo=z —=— —(ol?>-c? requirements are
— 3B D2
1
D) ol’—c?>-D ol?>-c?+1>0 and —0(0|2—02+ 7/>0 (13
. .
o ) . respectively. Combining these conditions leads to the follow-
Substitution of Eqs(8) and(9) in Eq. (7) yields ing system of inequalities for and! wheno>0:
o I 1 22 2
SgnA = sgn _EA A+ EA') s tolc<c<l+ol?, (14)
) and foro<0
I
=sgn 0'( A+ EA|> c’<i+ol? (15)

9 J These inequalities define the regions in,lj parameter
=sgn —U(K+C%K+|EK” plane, where the basic solitary wave exits and is linearly
. transversely unstable, and these regions are presented in
=sgrf —o(ol?>~c?>~D)(401?2—4c*-D)]. (100  Fig. 1.
One can do a similar analysis for Johnson’s equdtidn
Since the condition for the transverse instability requikes whereoc=1, e=1, andD= —1. The existence requirement
>0, we have the following resulBuppose is 12<c2—1 and the instability condition i&>c?— . This
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result is inconclusive for two reasons. First, the two regionslo obtain explicit solutions of this equation, we note that by
do not overlap so the geometric condition does not predictakingu= ¢,, andv =1— 3 secRx in Eq. (20), and integrat-
instability for any parameter values. Second, when+1  ing twice the equation simplifies to
the equation is ill posed as an evolution equatithis can be
seen at the linear level where the dispersion relation predicts Drxxx— 40 bxx— ybx+ BH=0.

Solutions of this equation can be readily found in a manner

instability as the wave number goes to infinjtand so the
guestion of long-time stability is irrelevant. OIL ! )

similar to that in Ref[21] (see alsd11]). First we note that
in the limit x— *, Eq. (22) reduces to

Drxxx— dbux— yIxt+ Bd=0.

(22

IV. THE EVANS FUNCTION ANALYSIS

OF THE TRANSVERSE INSTABILITY (23

In this section we use the Evans function formalism in .
order to analyze the linear transverse stability problem foSubstituting nowg=e**¢, one can see that satisfies the
the Boussinesq modéll) for all values of the transverse guartic equation
wave number. We restrict attention to the parameter values of

most intereste = —1 andD = —1 associated with the good
Boussinesq, although we put no restrictionsfbut keeping
in mind thato=+1 is the most interesting case

However, the class of solitary waves will be enlarged.
Namely, we include solitary waves biasymptotic to a non-

trivial state at infinity, specifically,

U(0)=U.+68% seck(56), 6=x—ct+ly, (16)

where
s=3(V1+da—c®+ol?)¥? and U.=3(1-c?+0l?)
2a

1+1+4a’

The value of the parameteris constrained only by the ex-
istence of the square root-+4a=(c?— ol?).

Here we will not use any geometric structyedthough it
might be interesting to look more closely in this direcion
and so work directly with Eq(1). Let

—28%=— (17)

u(x,y,t)=U(8)+Re{u(f)exdiky+at]}. (18

By substituting this expression in E@.) and linearizing, one

pt=4p?—yu+B=0. (29)
Quatrtics of this form have been analyzed in R&f.[see Eq.
(10.9 therd, and when Reg)>0 there are two roots with
positive real part and two roots with negative real part.
Therefore, the space of solutions decayingas+ » is two
dimensional, as is the space of solutions decaying-as
— o,

If the four rootsu;, j=1,...,4 of Eq.(24) are distinct,
the corresponding solutions of E®2) are given by

¢;(x)=e"h;j(x), (25)

with

hi(X)=(4u] +8u;— y) — 12uf tanhx. (26)
The case of multiple roots can be handled similé2y]. The
solutions of the original equatio(20) are found by substi-
tutingu(x) = ¢(X) 4, and the other components of the vector
v(x) can be obtained by differentiating the expression for
u(x).

Localized solutions of the linearized problem exist if one
can match the solutions decayingxas « with the solutions
decaying ax— — . This can be determined by finding the
zeros of the so-called Evans function, which correspond to

obtains the following equation for the complex function the eigenvalues of the linearized problem. To define the

u(e):
’600004' 2(UD)99—(1—02+ O'IZ)":I(;(;
—2(ch+iokl)uy,+ (A%+ok?u

=0. (19

After the change of variablg= 86, substitution of the ex-
plicit expression forU from Eq. (16), and dropping the til-
des, Eq.(19) reduces to

Usor— 4L (1—3sech x)u]— yu,+ Bu=0, (20
where
_ 2(ch+iakl) _N+ok? @)
Y= S B= 5

Evans function, we write Eq20) as a first-order system

u
Vy=A(X)V, v= ,

uXXX
0 1 0 O
0 0 1 O 5
A(x)= 0 0 0 1 (27)
—B+4v,, y+8vy 4v O

with v=1—3 seck x.

Since the trace of the matriA(x) vanishes, the Evans
function can be defined aB(\,k)=v(X)A\Vy(x)/\v3(X)
Av,(x) [22]. An alternative expression for the Evans func-
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b)
0.1
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0.25, c=0.35, andc=0.75, respectively(b) Growth rate versus

transverse wave number for the values of velocity0.6, c=0.75, andc=0.9, respectively.

tion can be derived by using the adjoint system as shown in Zeros of the Evans functioi(\,k) correspond to the

Ref.[23]. The adjoint system of Eq27) has the form

Wy

wy=—AX)*w, w= , (28

whereA(x)* denotes the Hermitian conjugate Aff A(x)*
=A(x)"]. The equation fomw, turns out to be

(W) xxxx— 4U(W4)xx+;(w4)x+ﬁ(w4):0- (29

This equation is equivalent to ER2) up to the change of
variablesxx— —x, y— vy, 8— B, and therefore its solutions
can be obtained from Ed25) by changingx for —x and
conjugating them:

(Wg)j=e #i*hj(—x), (30)
with h;(x) defined in Eq.(26). Other components of the
vectorw(x) can be obtained from E¢28).

Let w; and u, be the two roots of Eq24) with negative
real part, and let;(x) andw;(x), j=1,2, be the correspond-
ing solution vectors of the linearizeespectively, adjoint
system. Since the matriX(x) in Eq. (27) is traceless, we can
define the Evans function for syste@7) as follows[23]:

(wy(0),v1(0)) (w1(0),v,(0))

K)=
B (00 v1(0)) (wi(0),v(0)]”

(31)

where (-,-) denotes the complex inner product 1. To

bounded solutions of the linearized stability problem with
the wave numbek and the growth rate R&{(. The leading
order terms(in k and \) in the Evans function are in com-
plete agreement with the results of the geometric condition
of Sec. lll. Note that, since the construction here is based on
a basic solitary wave with a nontrivial state at infinity, it is
suggestive that the geometric conditidr6] extends to such
waves.

We illustrate the dependence of the Evans function on the
wave speed and transverse wave number in Fig. 2. In the left
graph, the transverse wave number is set to zero, to compare
with the known results on longitudinal instability. The graph
is in complete agreement with the known resgég., Refs.
[3,5]) that the solitary wave is stable fégr<c<1 and un-
stable for 6=c<3. In the right-hand graph in Fig. 2, we
present the plot of the growth rate Rg(as a function of the
transverse wave number. Note that the waves of the good
Boussinesq which are longitudinally stable are transverse un-
stable. Note also that there is a cutoff wave number, similar
to the other cases of the transverse instability, such as in the
Zakharov-Kuznetsov equatidd5].

V. POSTINSTABILITY SIMULATIONS

In this section, we perform a simulation of the PDB
using the multisymplectic spectral discretization proposed in
Ref. [18] and applied there to Zakharov-Kuznetsov and
shallow-water equations.

The (2+1)-dimensional Boussinesq equation is consid-
ered withe=D=—1 on a finite domainX,y)=[0,L][O,L]
with L>0 some constant, and periodic boundary conditions
on both spatial variables. We choose a spatial mesh size as
Ax=Ay=Am=L/2N and introduce the discrete two-

obtain a unique definition of the Evans function, the scalingyjimensional Fourier transform defined as

lim,_.., e‘ZMJX(wj(—x),vj(x)>=1 is used. This normalizes
the eigenvectors and the adjoint eigenvectors Af
=limy_ 4 A(X).

After some lengthy algebra and introducing the scaling,

which enforces the asymptotic limiE(\,k)—1 as\—oo,

e fk(i—1Am=4(1-1)Am

1 2N
Uy, =—— N
TR

the final expression for the Evans function can be obtaineqNhere

which we do not present here since it is lengtthe expres-

sion for the Evans function as well as the calculations of the

instability growth rate can be downloaded asiarPLE file
from the websitd 24]).
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0 /0 time

FIG. 3. (a) The development of the longitudinal instability and collapse at timé?2.6 forc= 41. (b) Propagation of a stable solitary
wave forc=3.

and uj;~u(m;;),m;;=(i —1)Ax+(j—1)Ay (cf. Ref.[25]). could grow “faster than exponential” because for large trans-
Fourier spectral discretization of the {2)-dimensional verse wave numbers, the growth rate of the initial data has no

Boussinesq equation yields upper boundill posedness
. To test the algorithm, we first used it to confirm the results
AUy :Eﬁ[sﬁﬁu kT ViuF(U) ]+ O'§|2U Kl s (320  for the dynamics of the one-dimensional solitary waves. The

o initial profile was taken to be of the form
where#, are the entries of the diagonal matrix defined by the

; 3 1 L
relations u(x)= E(l—cz)secﬁ 5(1—02)(x— S| |+ €00,
O=0,, for k=1,...N, (34)
. .=0. and where ¢(x) is a small random perturbation. The results are
N presented in Figs. 3 and 4. For £ the solitary wave solu-
E(:_GZkaJrZ for k=N+2. ... N tion is linearly unstable as reported in Ref4,5], and the

development of this linear instability is shown in FigaB In
which follow from the periodicity of the discrete Fourier the casec=3 the numerical results confirm the stability of
transform[25], and F(U) denotes the Fourier transform of the solitary wavesee Fig. 8)]. The simulations were run
the antiderivative of the functiofi(u) in Eq. (1). The same ©N @n interval of the length =64 with 2N=128. As a nu-
result would be obtained if one applied the spectral discretimerical check, the total energy determined by the Hamil-
zation to the multisymplectic formulatio@), as it was done tonian (2) was monitored, and it was found to be well be-

for the Zakharov-Kuznetsov equation in REES]. haved till near the collapse when the significant errors occur,
For the second-order time derivative we used the centrdtS llustrated in Fig. 4. _ _ L
difference approximatioritime step was chosen to hkt For the two-dimensional simulations, we took an initial
=0.01 in all the simulations profile in the form of the line solitary wave uniform i
_ 3 1 L
Sl IR T 2UR T U gy UXY0=5(1-chsech 5(1—c2)(x— > }+§<x,y>,

One should note that the only valid test of this scheme can bahere ¢(x,y) is a small random perturbatidim this casd
done for the good Boussinesq equation with-0. For o =0). In the casec=7%, the solitary wave(35) is linearly
<0 in the case of the good Boussinesq equation, an initialinstable in longitudinal direction as is known from the sta-
profile independent ok would result in a solution which bility analysis of the one-dimensionélD) equation. In Fig.

® 25

% 5 10 15 o 10

time 20 30

time

FIG. 4. Energy evolution. The dashed line represents the initial energy level, and the solid line shows the time evolution dienergy.
Unstable case= 1. (b) Stable case= 3.
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a) b)

FIG. 5. Solitary wave foir=1 andc= %. (@) Initial profile. (b) The development of the transverse modulafithme t=11.25).

5(b) we can see this instability developing in a similar way 10(b) the plot of Inju(t)—u(0)|? as a function of time. From
as in the 1D case. Wave collapse in this case is shown in Fighe Fig. 1a), we see that it takes some time for the trans-
6(a), with the plot of energy as a function of time in Fig. verse instability to develop. Therefore, we choose as a start-
6(b). To illustrate that the instability is due to one- ing point for comparison a time interval when the most un-
dimensional longitudinal effects, we present in Fig. 7 plots ofstable eigenmode has already been selected by the solution,
the time evolution of the maximal amplitude of the solution, and one is still within the linear regime. It can be seen from
which behaves similarly in 1D and 2D cases. Fig. 10b) that the corresponding growth rate for the solution
Whenc= £, the solitary wave is longitudinally stable but is close to the one determined by the most unstable eigen-
transversely unstable, and the development of this instabilityalue (numerical value of the growth rate is,,~0.0367,
is presented in Figs. 8 and 9. The length of the square bowhile the analytical result is ,,,~0.0371). For larger time
was chosen to be =128 with the number of Fourier modes nonlinear effects start playing a role, and they finally lead to
2N=256. If the perturbation added is of the form of a noisethe collapse.
that is uniform in both directions, one can expect during time
evolutl_on a selection of the transverse wave _nu_mber corre- VI. CONCLUDING REMARKS
sponding to the most unstable eigenmode as is illustrated in
Fig. 8(b). Using a Fourier transform of the wave profile, we  We have considered the transverse instability of line soli-
found in this case that the wave number selectek is tary wave solutions of the (21)-dimensional Boussinesq
=0.123£0.003, which is a good approximation of the wave equation. Using the multisymplectic formulation of the sys-
number found from the analytical predictidg,,,=0.121  tem, we derived a geometric condition for this instability for
[cf. Fig. 2b)]. To further investigate the long-time dynamics small transverse wave numbers. With an Evans function ap-
and verify the analytically predicted growth rate, we start aproach, the linearized stability equation was analyzed, and
computation with a perturbation proportional to cos(O\)23 this allowed to obtain the dependence of the instability
which corresponds to the most unstable eigenmode. At thgrowth rate for all transverse wave numbers. Numerical
initial stage of the evolution transverse modulation has aimulations support the analytical predictions about trans-
slowly growing amplitude, and then the instability prevails verse and longitudinal instabilities and demonstrate the de-
leading finally to the collapse of the wave as shown in Fig.velopment of those instabilities and subsequent wave col-
9(a). The energy proves to be conserved rather well durindapse. Analytical and numerical conclusions about the wave
the simulationgsee Fig. ®b)], although it deviates substan- number and the growth rate corresponding to the most un-
tially as the wave approaches the stage of collapse. stable eigenmode are also in good agreement.
The growth of the amplitude, followed by the fast col- We conclude with an open problem. While analytic theo-
lapse can be observed in Fig.(&0 In order to compare the ries for the collapse of solitary waves for the Boussinesq
theoretical and numerical growth rates, we present in Figequation in one space dimension eXik®], it is an interest-

a)

0 5 10 15

time

FIG. 6. The same as in Fig. B8 Wave collapsétime t=12.6). (b) Energy evolution. The dashed line represents the initial energy level,
and the solid line shows the time evolution of energy.
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a) 5 b a5

W 5 . 30

he)

2 2 25

£ 20 s

E E 20

5 15 ]

E E 15

E £

g 10 g 10
5 5

(=)
2

0 5 time 10 15 5 ifme 10 15

FIG. 7. Time evolution of the maximal amplitude for the 1D unstable solution wptli (a) One-dimensional caséy) Two-dimensional
case.

0 50 100 150
time

FIG. 9. The same as in Fig. 8 Wave collapse after transverse modulatitime t=159). (b) Energy evolution. The dashed line
represents the initial energy level, and the solid line shows the time evolution of energy.

a) b)

30 5
0 25 5
h=]
2 S
52 g4
& 3
— 15 =
E 5°
g 10 £ 2
£

5 1

0 8

0 50 , 100 150 0 100 120 . 140 160

time time

FIG. 10. (a) The time evolution of the maximal amplitude for the transversely unstable solutioncwit%L (b) The evolution of
Influty—u(0)||>. The solid line represents the actual solution, the dashed line corresponds to its linear approximation, and the dash-dotted line
is the line of the maximal analytical growth rate.
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ing open problem to develop an analytical technique for pre- ACKNOWLEDGMENTS
dicting collapse for the case of two space dimensions, e.g., a
generalization of the virial theorem or the result of H&g], The authors would like to thank Sebastian Reich for
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